초록
Most research efforts on the OCDMA technology assume single-bit-per-symbol transmission techniques such as on-off keying. However, achieving high spectral efficiency with such transmission techniques is likely to be a challenging task due to the "unipolar" nature of optical signals. In this paper, an M-ary transmission technique using more than two equally-weighted codes is proposed for OCDMA local area networks, and ie BER performance and spectral efficiency are analyzed. Poison frame arrival and randomly generated codes are assumed for the BER analysis, and the probability of incorrect symbol detection is analytically derived. From the approximation, it is found that there exists an optimal code weight that minimizes the BER, and its physical interpretation is drawn in an intuitive and simple statement. Under the assumption of this optimized code weight and sufficiently large code dimension, it is also shown that the spectral efficiency of OCDMA networks can be significantly improved by increasing the number (M) of symbols used. Since the cost of OCDMA transceivers is expected to increase with the code dimension, we finally provide a guideline to determine the optimal number of symbols for a given code dimension and traffic load.