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Abstract

In this literature, the selection of data set among the universe set is carried out with the fuzzy entropy function. By
the definition of fuzzy entropy, the fuzzy entropy function is proposed and the proposed fuzzy entropy function is
proved through the definition. The proposed fuzzy entropy function calculate the certainty or uncertainty value of data
set, hence we can choose the data set that satisfying certain bound or reference. Therefore the reliable data set can
be obtained by the proposed fuzzy entropy function. With the simple example we verify that the proposed fuzzy

entropy function select reliable data set.
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I. Introduction

Generally for the linear system, reliable input invokes
reliable output. Hence the reliable data selection is
necessary in the view of reliable result. Previous results
concerning this area are related to the pattern
recognition and information theory. Pattern recognition is
generally used for classifying patterns{l]. Geometrical
distance between data sets are mainly used to classify
patterns. Also it is well known that the entropy
represents the uncertainty of the fact. Hence entropy has
been studied in the field of information theory,
thermodynamics, or system theory etc.. The results that
entropy of a fuzzy set is a measure of fuzziness of the
fuzzy set are reported by the numerous researchers[2-9].
the axiomatic definitions of entropy was proposed by
Liu. The relation between distance measure and fuzzy
entropy was viewed by Kosko. Bhandari and Pal gave a
fuzzy information measure for discrimination of a fuzzy
set A relative to some other fuzzy set B. Pal and Pal
analyzed the classical Shannon information entropy. Also
Ghosh used this entropy to neural network. However,
these studies are focussed at the design of entropy
function and analysis of fuzzy entropy measure, distance
measure and similarity measure. Hence we carried out
the application of fuzzy entropy to the selection of
reliable data set among the universe set.

In this paper, we derived the fuzzy entropy with
distance measure. The proposed fuzzy entropy is
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constructed by the Hamming distance measure, and
which has the simple structure compared to the previous
proposed entropyl8]. With the proposed entropy, we
verify the usefulness through the application of fuzziness
measure to the universe data set. We also carried out
calculate fuzziness of sample data set.

In the next chapter, definitions of entropy, distance
measure and similarity measure of fuzzy sets are
introduced and the proof of proposed entropy is
discussed. In chapter III, Construction of fuzzy
membership function is proposed by the Extension
Principle[11]. Also in chapter IV, simple example is
carried out. Experiments that choosing middle level 5
students among 65 students are performed, and the
chosen sample data are measured by the proposed
entropy measure. Finally conclusions are followed in
chapter V.

Notations of this paper are used those of Fan and
Ma(1999).

Il. Fuzzy entropy

In this chapter, we introduce some preliminary results
of fuzzy entropy. Measure of fuzziness i1s an interesting
object for the fields of pattern recognition or decision
theory. It is well known that the measure of entropy for
the fuzzy sets represents the information of uncertainty.
Measure of crisp set can be determined by classical
mathematical study, whereas the concepts of fuzzy
measures and fuzzy integrals had been proposed by
Sugenol12]. Recently, Liu suggested three axiomatic
definitions of fuzzy entropy, distance measure and
similarity measure as Definition 2.1 3[4]. By these
definitions, we can induce entropy which is satisfying
definition of fuzzy entropy, and compare it with the
result of Fan et al.
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Definition 2.1 [4] A real function ¢ F(X)—R" is called
an entropy on F(X), if e has the following properties:
(El) «D)=0, VD=F~(X)
(E2) e([l/Z])‘——maX AeF(X)e(A)
(E3) e(A*)<e(A), for any sharpening A* of A
(E4) e(A)=e(A°), VAesF(X).

Where, R*=[0, ), A°is the complement of A, and
A" is a sharpening of A. To express entropy function
explicitly, distance measure is needed. Next we illustrate
definition of distance measure.

Definition 2.2 [4] A real function & F >>R7* is called
a distance measure on F(X) if d satisfies the following
properties:

(D1) &A,B)=d(B,A),VA,BeFX)

(D2) dA,A)=0 VAeFRX)

(D3) d(D,D 9)=max 4 g d(A, B),
VA,B eF(X)
VA,B,CesFX), if ACBCC, then d(A,B)
<d(A, O and d(B, O)<d(A, ).

VD eNX),

(DD

One of well known distance measure is Hamming
distance. Similarity measure can be expressed as the
complementary meaning of distance measure. Hence the
definition is illustrated as follows.

Definition 2.3 [4] A real function s F *>R™ is called
a similarity measure, if s has the following properties:
(S1) (A,B)=d(B,A),VA,BeFX)
(82) (A, A9=0 YA eFX)

(83) S(D, D)=max A,BEFS(A’ B), VD EHm,
VA,BeFX)
(54) VA,B,CeFRX), if ACBCC, then

s(A,B)2s(A, C) and (B, C) =s(A, O).

Above definitions are the axiomatic, Liu also pointed out
that there is an one-to-one relation between all distance
measures and all similarity measures, d+s=1. Next,
some useful related definitions are listed. If we divide
universal set X into two parts D and D ‘in P(X), then
the fuzzy entropy, fuzzy distance, and similarity are
obtained by the following previous results. When we
focus interesting area of universal set, then we can
extend the theory of entropy, distance measure and
similarity measure of fuzzy sets.

Definition 2.4. [7] Let ¢ be an entropy on F(X). Then
for any AeF(X),

«A)=e(AND) + e(AND °)
is o-entropy on F(X).

Definition 2.5. [7] Let 4 be a distance measure on
F(X). Then for any A,B eF(X), and D<=F(X),

d(A, By=d(AND, BO\D)+d(AN\D °,BN\D
be the o-distance measure on F(X).

Definition 2.6. [7] Let s be a similarity measure on
F(X). Then for any A,B eF(X), and D ePX),

s(A,B)=s(AND,BUD 9+s(AND °,BUD)
be the o-similarity measure on F(X).

From the properties of Definition 2.5 we can derive
the following proposition.

Proposition 2.1 [8] Let 4 be a o¢-distance measure on
F(X): then
@) d(A, A ,.)2dA” A,

(ll) d(Ar A far)Sd(A .’ A far)-

Fan, Ma and Xie also proposed the following theorem[8].
In theorem, they proposed fuzzy entropy function with
the distance measure. Proposed entropy contain two crisp
set A e, and A 4,

Theorem 2.1{8] Let d be a o-distance measure on
F(X), if d satisfies
(@ a5 D, [0) =d( D, D), VD eA(X),

(i) d(A°, B 9=d(A,B), A,Be F(X),
then e(A)=d(A4,A,,)+1-dAA,) is
entropy.

a fuzzy

Fan and Xie derived new entropy via defined entropy,
which is introduces by e¢*=¢/(2—e), where e is an
entropy on F(X). To discriminate between entropies, we
give another entropy using Fan's idea.

Theorem 2.2 If e is an entropy on F(X), then e=e*is
also an entropy on F(X), where real number k=1.

Proof. It is clear that 0<e(A)<1 for any A eF(X), and
e satisfy Definition 2.1 as follows
(E1) : e(D) is zero for V D eP(X), hence satisfied.
(E2) @ e([1/2]) = max ,cpxe(A) is also satisfied.
(E3) : A *)<e(A) is clear.
(B4) : eA)=e(A ©) is also easily proved, where

Y A €F(X).
QED

Hence the structure of Theorem 2.2 satisfies the entropy
which is induced from the another entropy.

It is often required that the reliable data set selection
is necessary among many data set. In this chapter, we
introduce the relation of fuzzy membership function and
the fuzzy entropy. Let X be a space of objects and x be
a generic element of X. A classical set A, ASX, is
defined as a collection of elements or objects x=X, such



that each x can either belong or not belong to the set
A. Whereas a fuzzy set 4 in X is defined as a set of
ordered pairs:

A= (x, 1 ,(x)lxeX

where # 4(x) is called the membership function for the
fuzzy set A. The membership function maps each
element of X to a membership grade between 0 and 1.

By the results of Liu, if the fuzzy entropy function
expressed by the following Hamming distance measure
for the between fuzzy sets A and B, :

dA, By =% Bl ax ) =1 oz ) 1)

where X=x,,x4,"x,.

Fuzzy entropy means the uncertainty of the fuzzy set,
hence it represents the two times of the shaded area of
Fig. 1 [78]. In Fig. 1, A .. denotes the crisp set of
fuzzy set A.

Fig 1. representation of entropy

The more fuzzy set close to the crisp set A ,.,, the
more membership function become certain. In the next
theorem, we propose fuzzy entropy function with the
Hamming distance. Which is different from Theorem of
Fan, Ma and Xiel8]. Proposed entropy needs only A
crisp set, and it has the advantage in computation of
entropy.

near

Theorem 2.3 Let d be a o-distance measure on F(X);
if d satisfies d(A°, B 9)=d(A,B), A, Be F(X), then

e(A)=2d({ANA o), [1D +2L(AUA ,..),. 10D —2 (2)
is a fuzzy entropy.

Proofs are carried out by showing whether the (2)
satisfy Definition 2.1, and it can be found in [10]. Hence
we omit them in here.

Theorem 2.3 uses only A ,.,, crisp set, hence we can
consider complementary entropy function. Which
considers only A ., and it has more compact form than
Theorem 2.3.

Theorem 2.4 Let d be a o-distance measure on F(X);
if d satisfies d(A°, B°)=d(A,B), A, Be F(X), then

e A)=2d((ANA ), [0D+2& (AUA ,),[1D) ()

Selection of data set with fuzzy entropy function

is a fuzzy entropy.
Proofs are similar to those of Theorem 2.3, and it is
also found in [10].

Proposed entropies Theorem 2.3 and 2.4 have some
advantages to the Liu's, they don't need half part of
assumption of Theorem [8] to prove (2) and (3).
Furthermore (2) and (3) use only one crisp sets A ...
and A ,, respectively. By the computational results, (2)
and (3) are the o-entropy on F(X). This o-entropy
property has the advantage on the computation burden.
It can be shown in the literature[11].

lll. Fuzzy membership function design

In this chapter, we introduce fuzzy membership
function construction with the Extension Principle[10].
Zadeh had proposed Extension principle for extending
nonfuzzy mathematical concepts to fuzzy sets.

Extension Principle
Let X,,X,,-,X,, and Y be nonempty crisp sets,

be the product set of X, X4,
from X to Y. Then, for any given n fuzzy sets A, F
(X)), X=X xXx-xX, i=12,,% we can
induce a fuzzy set Be F(Y) through f such that

,X ,, and f be mapping

tpM=5up ,_ s, eominlp 4 (), 04 (x5), ...

b4 (x )],
where we use the convention
sup reodxe[0,0] =0 if F7Y () = 0.

As an example, we can obtain a binary operator * on
fuzzy sets A,Be F(X)

a2 =sup L4 (x )AL 5(], V2EX,

let A and B be fuzzy numbers. Then A+ B is
defined by

tarpD=sup oy i DNAp (V)] VzeX

Then, for any given 2 fuzzy sets A,BeF(X ), we

can induce a fuzzy set A+ B F(Y). From this
procedure, we can modify fuzzy membership functions
for our purpose. Next chapter, we measure the one
course of the study uncertainty for one class. One class
consist of 65 students. For the simplicity Gaussian
distribution function of the scores is modified to the
membership function. After obtaining Gaussian function,
normalization and truncation of the function is carried
out to satisfy membership function.
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IV. lllustrative Example

We illustrate the example of reliable data set selection
from the universe sets. Statistical mean and variance do
not propose the fuzziness or reliability “how much”.

Hence with the help of the definition of entropy, fuzzy

measure has introduced in Chapter II. It is assumed that
one class consist of 65 students. Educational level can be
classified by the two viewpoints, the one is the heuristic
representation and the other is the grade. Mean of 65
students reveals 53.73, and the average level student
membership function is shown in Fig. 2. As is explained
in Fig. 1, the shaded area of Fig. 2 stands for the
uncertainty of average level. The average level students
have the grade of B and C, which points are between 37
and 71. In this case, level of chosen 5 students can be
measured by the entropy function which are illustrated
in (2) and (3). Furthermore, crisp set of grade B and C
is also represented in Fig. 2 through rectangle.

o 10 20 30 ) =a &0 k) B0 90 Yoo

Fig. 2 Average level student membership function
and B, C grade

First we choose 5 students randomly. Students points
are illustrated by s,-s; in Fig. 3. And its fuzzy entropy
value can be calculated with egs. (2) or (3). Actual
values, membership function value and fuzzy entropy
values are shown in Table 1. Hence the fuzzy entropy
value of the group is 0.2587. Next, repeating this
procedure we obtained following results. Additional
experiments are carried, and the 5 students are chosen
as Fig. 4 and 5. Table 2 and 3 shows the entropy values
of the samples. Each time we choose 5 students
randomly. Next calculating (2) or (3), then we can
calculate student group entropy. As obtained value
reaches to zero, it means that student group has higher
tendency contained in B, C grade statistically.
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Fig. 3 Selection of 4 students
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Table 1 Point, membership value and entropy value of
samples(Fig.3 case)

Sample Point Membership value | Fuzzy entropy value
S1 25 0.1565 0.3129
S2 44 0.8319 0.3363
S3 54 0.9962 0.0077
54 61 0.8483 0.3034
S5 &0 0.1667 0.3333
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Fig. 4 Selection of 5 students

Table 2 Point, membership value and entropy value of
samples(Fig. 4 case)

Sample | Point | Membership value [Fuzzy entropy value
S1 50 0.9821 ~0.0358
S2 52 0.9987 0.0026
S3 55 0.9877 0.0245
S4 57 0.9572 0.0857
S5 59 0.9098 0.1804
D; I SZ/’éaSA |
ool = ]
onl \‘\M:

Fig. 5 Selection of 5 students

Table 3 Point, membership value and entropy value of
samples(Fig. 5 case)

Sample | Point | Membership value |Fuzzy entropy value
S1 40 0.6762 0.6475
S2 52 0.9987 0.0026
S3 54 0.9962 0.0077
54 55 0.9877 0.0245
S5 72 0.4088 0.8177




By the Table 1, 2 and 3, the mean values of each
trials are 52.8, 54.6, and 54.6 respectively. Statistical
results show that sample means of each case are similar
to the total average, furthermore 2nd and 3rd trials
illustrate same mean values. It is not easy to choose
which trial are represents the middle level. Even though
2nd and 3rd trials have the same means, it also
represent different meaning in the heuristic viewpoint.
Whereas the fuzzy entropy average values of the each
groups are 0.2587, 0.0658 and 0.3. By the meaning of
fuzzy entropy, it is clear that the 2nd trial is the most
reliable. From this experiment, we can offer the metric
value to the heuristic viewpoint. As an example, if we
refer the reliability level like as 0.2 or etc., then middle
level students collection can be possible with some
objective guideline. Similarly, it is also possible to collect
high level or low level students among 65 students.
These results can be extended multi dimensional case
with careful consideration. For the multi dimensional
case, newly defined membership function will be
required.

V. Conclusions

In this literature, we derive the fuzzy entropy with
distance measure. The proposed fuzzy entropy Is
constructed by the Hamming distance measure, and which
has the simple structure compared to the previous
proposed entropy. With the proposed entropy, the
usefulness is verified through the application of measure
the fuzziness to the sampled set among universe data set.
Through the example, we can verify fuzzy entropy has
the different meaning compared to the statistical results.
Next, it is valuable that extension of this study to the
multi dimensional case or continuous data monitoring.
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