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Abstract

The relations of fuzzy entropy, distance measure, and similarity measure are discussed in this paper. For the purpose -
of reliable signal selection, the fuzzy entropy is proposed by a distance measure. Properness of the proposed entropy is
verified by the definition of the entropy measure. Fourier and Wavelet transform are applied to the stator current
signal to obtain the fault features of an induction motor. Membership functions for 3-phase currents are obtained by
the Bootstrap method and Central Limit Theorem. Finally, the proposed entropy is applied to measure the fault signal
of an induction machine, and the fuzzy entropy values of phase currents are illustrated.
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l. Introduction

Characterization and quantification of fuzziness are
important issues that affect the management of
uncertainty in many system models and designs. The
results that entropy of a fuzzy set is a measure of
fuzziness of the fuzzy set are known by the previous
researchers [1-7]. Liu had proposed the axiomatic
definitions of entropy, distance measure and similarity
measure, and discussed the relations between these three
concepts. Kosko viewed the relation between distance
measure and fuzzy entropy. Bhandari and Pal gave a
fuzzy information measure for discrimination of a fuzzy
set relative to some other fuzzy set. Pal and Pal
analyzed the classical Shannon information entropy. Also
Ghosh used this entropy to neural network. However, it
is uncommon application of proposed entropy to the
object in these studies. Hence we carried out the
application of fuzzy entropy to the membership function
of the faulted motor stator current.

In this paper, we proposed a fuzzy entropy with a
distance measure. The proposed fuzzy entropy which has
the simple structure compared to the previous proposed
entropy is derived in Theorem 3.2 by the well-known
Hamming distance measure. With the proposed entropy,
we represent another similar entropy. We have proved
that these proposed entropies satisfy the definition of
entropy. Usefulness of two entropies are verified by the
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application of measure the fuzziness of the 3-phase
faulted induction motor stator current. Generally, 4
classes of induction motor faults are known as bearing
fault, rotor bar failure, eccentricity and stator winding
problem [8-12). In previous results, they have used
arbitrary just one phase current. Hence we carried out
the fuzzy entropy characterization to measure fuzziness
of the membership function of each phase currents. For
the decision of faulted motor, phase stator current is
transformed via Wavelet decomposition [14], [15], and
among the obtained coefficients the 4th coefficient of the
6th detail is used to decide which fault take places. From
the 20 coefficients of the 4th coefficient of the 6th detail
we process Bootstrap method [16], and we also obtain
the membership function via Central Limit Theorem [16].
Using the proposed fuzzy entropy we measure the
entropies of each phase current.

In the next section, the axiomatic definitions of
entropy, distance measure and similarity measure of
fuzzy sets are introduced and some basic relations
between these measures are discussed. In Section 3,
entropy is induced by the distance measure. In Section 4,
fault signals are measured by the proposed entropy
measure. Conclusions are followed in Section 5.

Notations: Through out this paper, B " =[0, ), F(X),
and P(X) represent the set of all fuzzy sets and crisp
sets on the universal set X respectively. p 4(x) is the
membership function of A= F(X), and the fuzzy set A,
we use A€ to express the complement of A, ie.
2 4x)=1—p 4(x), Vx=X. For fuzzy sets A and B,
AUB, the union of A and B is defined as
# aus(0)=max(u 4(x), # p(x)), A(\B the intersection of
A and B is defined as u 4qp(x)= min(g 4(x), # 5(x)). A



fuzzy set A" is called a sharpening of A, if
a0 zp 4(x) when g ,(0)21/2 and p ,.(0) <p 4(x)
when p¢ 4(x)<1/2. For any crisp sets D, A ., and A ,,
of fuzzy set A are defined as

1 1 u, 0=+
D # alx
poo={2 750, = T

0 xel 0 #A(x)<7
0 #A(x)z—%
#A/a,(x)z 1 -

il. Fuzzy entropy

In this section, we introduce some preliminary results
and also discuss induced results. Liu suggested three
axiomatic definitions of fuzzy entropy, distance measure
and similarity measure as follows [4]. By these
definitions, we can induce entropy, and compare it with
the result of Liu.

Definition 2.1 (Liu, 1992) A real function ¢ F(X)—R "
or e {X)—R™ is called an entropy on F(X), or AX) if
e has the following properties:

(El) e«(D)=0, VD= X)

(E2) e([1/2]) =max 4.pxpe(A)

(E3) e(A™)<e(A), for any sharpening A* of A

(E4) «(A)=e(A ), VA= F(X).

where [—%] is the fuzzy set in which the value of the
membership function is 1/2.

Let S(x) be S(x)=—xmx—(1—20)In(1l—x), 0<x<1.
For fuzzy set A one of entropies can be represented by

) == 3 (S(u 4(x ), VA=F(X), S%

Then (1)
properties of (E1) - (E4), and it can be easily proved.

where X=x,%x,, %, satisfies the

Definition 2.2 [Liu, 1992] A real function ¢ F *—»R”
is called a distance measure on F(X), or PX) if d
satisfies the following properties:

(D1) d(A,By=d(B,A),VA,BeF(X)

(D2) d(A,A)=0, VA eF(X)

(D3) d(D,D )=max 4 gr d(A,B), VD ePlX)

D4 VA,B,CeF(X), if ACBCC,

then d(A, B)<d(A, C) and d(B, O)<d(A, ).

Distance measure can have various formulations. One
of distance measure between fuzzy sets A and B takes
the following form

AA, B = 3l alx ) —pe glx D)

for any integer p>1. (2)

Measure of Fuzziness with fuzzy entropy function

Futhermore, fuzzy normal distance measure is
obtained by the multiplication of 1/max ¢ perd(A, C).

Definition 2.3 (Liu, 1992) A real function s F *-R”
or P>>R " is called a similarity measure, if s has the
following properties:

(S1) s(A,B)=d(B,A),VA,BeFX)

(S2) s(A,A9)=0 VA eF(X)

(S3) s(D,D)=max 4 prs(A,B), VA, BeFNX)

(S4)VA,B CeF(X), if ACBCC,

then s(A,B)=s(A, C) and s(B, () =s(A, O).

Liu also pointed out that there is an one-to-one
relation between all distance measures and all similarity
measures, d+s=1. Fuzzy normal similarity measure on
F is also obtained by the division of max ( pcrs(C, D).

If We divide universal set X into two parts D and
D¢ in AX), then the fuzziness of fuzzy set A be the

sum of the fuzziness of A(\D and AND . By this idea,
following definition is followed.

Definition 2.4. (Fan and Xie, 1999) Let e be an entropy
on F(X). Then for any AeF(X),

e(A)=e(AND) + e(AND ©)
is o-entropy on F(X).

Definition 2.5. (Fan and Xie, 1999) Let d be a distance
measure on F(X). Then for any A,BeF(X), and
D e A(X),

d(A,B)=dAND,BN\D)+d(AND <, BND 9
be the o-distance measure on F(X).

Definition 2.6. (Fan and Xie) Let s be a similarity
measure on F(X). Then for any A,BeF(X), and
D = (X),

(A, B)=s(tAND,BUD +s(AND ¢ BD)

be the o-similarity measure on F(X).

From definition 2.4-6, we can focus interesting area of
universal set and extend the theory of entropy, distance
measure and similarity measure of fuzzy sets. Fan and
Xie derived new entropy via defined entropy, which is
introduces by € =e/(2—e), where e is an entropy on
F(X). To discriminate between entropies, we give
another entropy using Fan’s idea.

Theorem 2.1 If ¢ is an entropy on F(X), then &= &*
is also an entropy on F(X), where real number 4> 1.

Proof. It is clear that 0<"e( A)<1 for any AeF(X), and
“e satisfy Definition 2.1 as follows
(E1) e is zero for VDeP(X), hence satisfied.

(E2) o (D) =max sepn(A) is also satisfied.

643



HX| ¥ XisAlAgEs] =82X 2004, Vol 14, No. 5

(E3) for e(A™)<e(A), e( A")<e(A) is clear.

(E4) for e(A)<e(A©), 2(A)<2(AC), is also easily
proved, where VAeFR(X). Q.E.D.

Hence the structure of theorem 2.1 satisfies the
entropy which is induced from the another entropy.

Hl. Fuzzy entropy induced by distance
measure

In this section, we propose entropy that is induced by
the distance measure. Among distance measures,
Hamming distance is commonly used o-distance
measure between fuzzy sets A and B,

diA, B =L 3 lu 40 )= 5l )l

=1

where X=1x,,x,, 'x, |#%]|is the absolute value of
k. Next Proposition shows that the distance relation of
between fuzzy set and crisp sets.
Proposition 3.1 (Fan and Xie, 1999). et d be a ¢
—distance measure on F(X), then

() dA A )2d( A A )

(ii) d(A’ A /ar)Sd(A "A /ar)'

Fan, Ma and Xie proposed the following theorem [7].

Theorem 3.1 (Fan, Ma, and Xie, 2001) Let d be a ¢
—distance measure on F(X), if d satisfies

@ a1 D,10)=d4 D, D), VD),

(i) d(AC,B)=d(A,B), A, Be F(X),

then e(A)=D(A,A ..)+F1—dAA,)
entropy.

is a fuzzy

Now we propose another fuzzy entropy induced by
distance measure which is different from Theorem 3.1 of
Fan, Ma and Xie [7]. Proposed entropy needs only A .,,

crisp set, and it has the advantage in computation of
entropy.

‘Theorem 3.2 Let 4 be a o-distance measure on F(X);
if d satisfies
d(A°,B)=d(A,B), A, BEF(X),
then

A A)=2d((ANA yoo). [1D + 24 (AUA,...). [0D)
—g 3)

is a fuzzy entropy.

Proof. The proposed equation in (3) become the entropy
for the fuzzy set A if it satisfies Definition 2.1. Hence
we start from (El). For (El), VDePX),D., =D,
therefore,

e(D) =2d((D mD near)r [1])+2d((D UDnear)» [0])_2
=2d(D, [1D+24(D, [0D—-2=0

(E2) represent that crisp set 1/2 has the maximum

entropy 1. Therefore, the entropy e([—%]) satisfies

(15D =2d(([FINIHT ). [1D
+2d( (15 1ULF) oo, 10D —2
=2d(([1N01D, [1])
+24(([51UL1D). [0D—2
=2-L+2-1-2=1

In the above equat'ion,‘ [—%—] near=[1] satisfied.

(E3) means that entropy of the sharpened version of
fuzzy set A, e(A”) is less than or equal e(A). For the
proof, A’..,=A .., is also used.

e(A") =2d((A*NA%). [1D+2H (A UAS). [0D -2
=2d((A"NA ), [1D+24(AUA .0, [0D) -2
<2d((ANA .0 [ID+2A (AUA .0, [01)—2
=¢(A)

Inequality in the above equation is satisfied because of
dA A ,..)=dA* A, in Proposition 3.1 (i). Finally,

(F4) is proved using the assumption d(A°€, B )

=d(A, B), hence we have

e(A) =2d((ANA pea) [1D + 2K (AUA ,o0), [01) —2
=2d((ANA .0 51119
+2d((AUA ,...) €, [019—-2
=2d((A °UA S, [0D)
' +2d((A°NAS,). [1)—-2

=e(A%. Q.E.D.

Theorem 3.2 uses only A ,.,, crisp set, hence we can
consider another entropy. Which considers only A ,
and it has more compact form than Theorem 3.2.

Theorem 3.3 Let d be a o-distance measure on F(X);
if d satisfies

dA°,B)=dA,B),A, BeF(X),
then
e(A)=2d((ANA ;). 10D+ 24 (AUA ), [1D) (@)
is a fuzzy entropy.

Proof. In a similar way we can prove from (E1) to (E4)
. For (El), VDeP(X),D ,,=D°F, therefore,

e(D) =2d((D (D), 0D +2d((D UD4), (1D
=2d([0], [OD+24([1], [1D) =0

And the entropy of crisp set [—é] is obtained as

follows, hence (E2) is



oI5 = 2d(([5

LINI5 ). 10D
+2a(([+ U+

] far [l])

=2d(([%]ﬂ[0]),[01)+2d(([ —%],[0]).[1])
=0+2 - 4 =1.

In this case [—%] =101 is also used. Entropy

between fuzzy set and sharpened version is derived for
the proof of (E3), for the proof A%, =A 4, is also used.
Property of Proposition 3.1 (i) d(A,A ,)<d(A*,A,,)
is used in inequality of following proof.

oA"Y =2d((ANA%), 10D +2A(A°UA%,).[1])

=2d((A"NA ,).[0D+2L (A UA .0, [1]D
szcz'%;qu ), 0D +2H(AUJA ), 11D
=¢

(E4) is derived with the assumption (A€ B%)
=d(A, B), we have

e(A)=2d((ANA ), [0D+2K (AUA ,).[1])
=2d((ANA 4, ©.[01 )+2d((AUA 4,) 1119
=2d((ACUAS), [1)+2d(A°NASG). [0
=e(A. Q.E.D.

Proposed entropies Theorem 3.2 and 3.3 have some
advantages to the Liu’s, they don’t need assumption (i)
of Theorem 3.1 to prove (3) and (4). Furthermore (3) and
(4) use only one crisp sets A ., and A g, respectively.
Later we check the proposed entropy of Theorem 3.2 and
33 are the o-entropy on F(X) for any AeF(X),
satisfying e(A)=e(AND) + e(AND ). Next, we apply
Theorem 3.2 and 3.3 to detect reliable phase current
among the 3-phases faulted induction motor.

IV. lllustrative Example

For the fault decision for the faulted motor 3-phase
stator currents are given. The stator current is the only
information that give the characteristics about what
faults take place. Data from the induction machine, 220V,
3450 rpm, 4 poles, 24 bars, 0.5 HP motor have been used
to verify the results experimentally. Six cases of bearing
fault, bowed rotor, broken rotor bar static eccentricity,
dynamic eccentricity and healthy conditions are given.

One phase current for the healthy and faulted signals
at the full load are illustrated in Fig. 1. Input signal have
16,384 data points, respectively. Maximum frequency
represents 3 kHz, data duration is 2.1333 s. As shown in
Fig. 1, differences of the various signals are not easy to
discriminate. Hence, we proceed with the useful Wavelet
transformation to detect the characteristics of the 6
signals. Among 12 details, the 4th coefficients of the 6th
detail shown in Fig. 2 has a good character to
discriminate various faults. To get the most reliable
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information from the 3-phase stator currents, now we
have to investigate another phase currents. After
proceeding Wavelet transformation to the other two
phase currents, we get 20 data for the 4th coefficients of
the 6th detail, respectively.

To measure of the entropies of the each phases, we
need to construct membership functions. With 20 data of
the each phases, we generate 50 data that are the means
of randomly chosen 10 data from original 20 data using
the Bootstrap method. Then 50 data for the phase 1 from
6.0 ~7.1, 50 data for the phase 2 from 5.0 ~7.16, and 50
data for the phase 3 from 35~90 are obtained
respectively.
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Figure 1 : Stator currents of healthy and faulted case.
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Figure 2: 4th coefficients of the 6th detail.

Now we construct Gaussian distribution with the 50
data, respectively (by the Central Limit Theorem). After
normalizing, we consider three Gaussian functions as
membership functions for the 3-phase currents, which
are illustrated in Fig. 3, 4, and 5. For the computation of
entropy, we assign center rectangle to the A4 ., and
the complement of A ., denotes A ,,. By Theorem 3.2
and 3.3, we apply fuzzy entropy to the Fig. 3-5.

e(A)=2d((ANA ,e). (1] 5)
+2d((AUA 400, [0D -2
e A)=2d((ANA ), 10D +24 (AUA .0.[1]) 6)

Table 1. Entropies of three phases

Phase 1 Phase 2 Phase 3
theorem 3.2 0.623% 0.62504 0.62432
theorem 3.3 0.62396 0.62504 0.62432

with this membership functions, we can calculate the
entropy measures of each phase currents. Table 1
indicates that 3-phase currents have similar entropies in
Theorem 3.2 and Theorem 3.3. We can conclude that
phase 1 is the most reliasble among 3-phase currents.
Next we derive the o-entropies of (5) and (6). As noted
in Definition 2.4, o-entropy represents e(A)=e(AMND)
+e(AND ). Hence the structures of o-entropies of (5)
and (6) are

e(A)=2d(((AND)AND) year),[1D
+ 2d( ( (AmD) U(A nD) near), [0]) (7)
+2d(((AND YNAND ) year) . [1D)
+ Zd( ( (A mD (/)U(AOD L) near)r [0]) _4

e(A)=2d(((ANDYAND) ). [0D
+2d((ANDUAND ). 0D (g
+2d (((ANDIYNAND 9 4,), (0D
+2d(((AND NIHAND ) 1), [1])

We obtain same results in Table 1 with (7) and (8)
[17]. Hence the proposed entropies also satisfy o
~entropy.

V. Conclusions

We investigate the relations of entropy, distance
measure and similarity measure. By the definition and
results of Liu, we propose new entropy formula with the
distance measure. For the faulted induction motor current
signals, Wavelet transform have been carried out.
Through the Wavelet transform, we can find the 4th
value of 6th detail result from the 12 scales of wavelet
decomposition is useful to analyze features of fault
signals. Also the membership function of the 3-phase
current signals are formulated using the Bootstrap
method and Central Limit Theorem. Furthermore, the
proposed entropy computation is obtained to the faulted
induction machine, and the values of the entropies are
illustrated.
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