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Signal Detection for Pattern Dependent Noise Channel
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Abstract

Transition jitter noise is one of major sources of detection errors in high density recording channels. Implementation
complexity of the optimal detector for such channels is high due to the data dependency and correlated nature of the
jitter noise. In this paper, two types of hardware efficient sub-optimal detectors are derived by modifying branch
metric of Viterbi algorithm and applied to partial response (PR) channels combined with run length limited modulation
coding. The additional complexity over the conventional Viterbi algorithm to incorporate the modified branch metric is

either a multiplication or an addition for each branch metric in the Viterbi trellis.
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1. Introduction

As linear densities for digital magnetic storage chan-
nels increase, the medium noise becomes one of the ma-
jor sources of impairments to the reliable retrieval of the
stored data. One of the important sources of medium
noise is non-ideal magnetic transitions. The transition
positions vary randomly around the nominal position due
to the zig-zag geometry of magnetic transitions written
in thin film media [1]. Since the transitions imply binary
information in digital recording, the noise is da-
ta-dependent. In other words, the statistics of the tran—
sition jitter noise is highly correlated with data patterns
stored in the magnetic medium. Various types of se-
quence detection methods have been proposed to achieve
the maximum likelihood sequence detection (MLSD) per-
formance by utilizing the statistical nature of the tran-
sition noise {21[3]. In one approach each factor of the
likelihood function is represented by a conditional proba-
bility density function (PDF) of an observation sample
conditioned by a channel input sequence {2]. In the other
approach each factor of the likelihood function is derived
from a PDF of an observation sample conditioned by
both a channel input sequence and past observation
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samples (channel output sequence) [3]. Without any
complexity constraints, both methods result in the same
optimal detection performance. However, a direct im-
plementation of the MLSD may not be feasible due to
the complexity depending on the noise characteristics in
the channel. As a sub-optimum solution, noise prediction
filters are used to reduce the jitter noise in the ob-
servation sample [4]. Path memories are used to obtain
noise estimate and to reduce the implementation
complexity. Different sets of noise prediction coefficients
are used to cancel the data-dependent noise associated
with different branches in the trellis. As a compromised
solution between detection performance and im-
plementation complexity, the correlation between neigh-
boring noise samples is ignored and a factorized like-
lihood function is obtained in [5], where each factor of
the likelihood function is a conditional PDF of an ob-
servation sample conditioned by a channel input
sequence. The detector implementation requires additional
hardware (a multiplier and an adder for each branch
metric calculation) over the conventional Viterbi algo-
rithm tuned to additive white Gaussian noise.

In this paper, two types of computationally efficient
sub-optimum sequence detection schemes are proposed
to improve the performance under the transition jitter
noise dominant channel. We first derive the proposed
schemes beginning with the optimum detection branch
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metric. Next, one of the partial response channels is tak-
en as an example and is used to describe the details how
the modified branch metric is applied to high density
channels. Finally bit-error-rate simulations results follow
with conclusions.

2. Optimized Branch Metric

For a data dependent noise channel, the maximum
likelihood (ML) detector finds a noiseless channel output
sequence y which maximizes the likelihood function:

L o D' C'a-y
Jen'|d 2

where the noise distribution is assumed to be Gaussian,
z is observation, N is the size of the observation sample
and C is the data dependent noise covariance matrix
which depends on the sequence y. The ML detector im—
plementation for such channel requires large number of
states in the Viterbi trellis and matrix multiplications for
each branch metric calculation. It can be shown that the
branch metric to implement the MLSD based on autore-
gressive (AR) noise model can be represented as the fol-
lowing form [2]:

f@ly)= ) Q)

L
ln(O',f) + (Z Pz - yk—i])2 /O': (2
i=0

where Pk is the noise prediction filter coefficients whose
values are dependent on the input data pattern, L is the
Markov memory length of the noise, &; is the noise

variance, % is an observation sample and Y% is a noise-
less channel output at time k. This metric is also a good
approximation for channel based on the non-AR model
(e.g. moving average (MA) noise model) when L is large
enough. The implementation complexity depends on L
and the span of the channel intersymbol interference

(ISD. In [4] the data dependent scaling term 0% and the
Ino% term in (2) is ignored and the path memory in the

Viterbi trellis is used instead of increasing the number of
states to reduce the implementation complexity. Another
compromised solution is proposed in [5], where off-diag-
onal elements of the covariance matrix which represent
correlation between neighboring observation samples, are
ignored in the metric calculation. The resulting modified
branch metric is defined by

In(6})+(z, —y,) /o], 3)

This branch metric is degenerate case of (2) where pre-
diction filter is delta function. The calculation of the
metric shown in (3) requires additional multiplication and
addition over the conventional Viterbi algorithm tuned to
additive white Gaussian noise.
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In this paper, two modified branch metrics are pro-
posed using a multiplication or an addition term only.
These additional terms are optimized to reflect the
amount of the variance of the pattern dependent noise.

Decomposing the noise variance O into two compo-—
nents, data—independent additive noise part o> and jitter
noise part 0.,, and considering only scaling term /07,
(3) can be represented by

(2o =¥ [(A+02,162) = (z, —y,)* /A +c, ) (&)

where the constant term 1/6 is ignored and the ratio of

noise powers is decomposed into data—dependent term Cx
and data-independent term 7. Instead of using multi-
plicative term, an additive term can be used to in-
corporate the pattern dependent noise variance. The re-
sulting branch metric is given by

(z, — ¥’ —c,o (5)

where G is a data-dependent term and & is a data-in-
dependent term. Proposed modified branch metrics de-
scribed above allows more noise margin for the ob-
servation samples associated with more transition noise
by scaling or subtracting with larger value. The scaling
operation effectively changes the shape of the conditional
probability function given some data sequence. The sub-
traction operation also shifts the decision boundaries be-
tween different symbols associated with different set of
data sequences.

3. Application to Partial Response Channel

In this section, proposed detection schemes are applied
to the channel which is suitable for high-density storage
system. For the analytical derivation purposes, it is as—
sumed that transition noise is modeled as random posi-
tion jitter around the nominal transition. Although the
example described here is based on a specific noise
model, we can also apply the proposed modified branch
metrics to other noise model or experimental readback
signal if we can measure the relative variance of the
transition noise.

The transition response with a small amount of tran-
sition jitter noise can be approximated by a first order
Taylor series [6]:

r@) =Y a.h(t—kT +A, )+n(?)
k

=Y a,h(t—kT)+ Y, a, Ak (t—kT)+n()
k k

where r(t) is the readback signal, @ is the channel input
data which takes "+1” or "0" value where "*1” repre-
sents existence of transition, A(t) is the isolated tran—



sition response, n(t) is additive noise, and A, is the
amount of position jitter which is assumed to be white
Gaussian. It can be shown that the observation sample
2 at the output of the equalizer can be represented as

Zy=a, *p, +Aa, *p *q, +n, (7

where * is the discrete time convolution operation, Pk is
equalization target response, 7} is the additive noise

sample and & is the derivative of the sinc function:
g, =[n’k cos(nk) - sin(mk)}/(x k)’ ®

In (6) and (7) the assumption is made that h(t) is an
ideally band-limited pulse (in high density magnetic
channel, most of signal energy is concentrated within the
Nyquist band). The same assumption is also made for
the equalization response.

For an EEPR4 channel [7), P(D)=1+3D+3D'+I and
the jitter noise response P(D)Q(D) can be well approxi-
mated by I +D—DZ D’ ignoring a scaling factor and small
residual tails (see Fig. 1). It can be also shown that the
jitter noise variance 1is proportional to the number of
transitions in the past four symbol periods. The variance

of the jitter noise o, can be represented in terms of
channel parameters as follows:

O',fl_k =ElAa, *p, *q, 12

=BlA,a, +A, a,,—A, ,a,_, - A, _a,, ) 9)
=EIA, P {la, ¥ +la,_ P +la,, 1" +la,_, I’}

where 4, and a, are assumed to be statistically in-
dependent to each other. From these observations, we
can see that 0., mainly depends on the current and the

last three transitions and approximately proportional to
the number of transitions within the last four symbol
intervals. For the parameter setting, ¢ in (4) and (5) is
set equal to the number of transitions associated with
the corresponding trellis branch. Once we obtain the rel-
ative variance for different data pattern, optimization of
the detector performance with new branch metrics in-
volves only adjusting a single parameter & or 7.

4. Simulation Results

For performance comparisons, bit-error-rate (BER)
simulations have been conducted for an EEPR4-equalized
Lorentzian channel combined with the time varying
maximum transition run code with rate 8/9 [8]. User bit
density is Du=25. SNR is defined as the ratio of squared
isolated transition pulse peak amplitude to the total noise
power within the Nyquist band at symbol density Ds=2.0
assuming all ”"1” data patterns are written in the media
[9]. In the simulations, it is assumed that 90% of the to-
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tal noise power comes from transition position jitter
noise and the 10% from additive noise. The number of
states in the Viterbi detector is 16 for all schemes and
the branch metric modification is made based on past
four and current input NRZ binary data symbols. For
comparison purposes the detection scheme using branch
metric shown in (3) is also tested. The variance term o;

in (3) has been estimated for each trellis-branch. The
measurement for the relative values of the noise variance
for different input data sequence can be done either in
analytical way assuming specific noise model as de-
scribed in the previous section or by direct measurement.
The number of transitions (0, 1, 2 or 3) in the past 4
symbol periods is used for C in (4) and (5) following the
analysis in the previous section. The parameter ¥ in (4)
and & in (5) are tuned to get the optimal BER
performance. In this simulations they are set to 56 and
1.3, respectively. As shown in Fig. 2, Viterbi detectors
with the modified branch metrics with additional multi-
plicative (MUL) and additive (ADD) term have about 1.0
dB gain at BER=10"° over the conventional Viterbi de-
tector and show the performance gain comparable to
Viterbi detector with branch metric in (3) which is la-
beled as VAR in Fig. 2.

5. Conclusion

Sub-optimum sequence detection schemes are pro—
posed for jitter noise dominant channels. Application to
the PR channel suitable for high-density systems shows
large performance gains without significant increase of
the implementation complexity. Comparisons to other
sub-optimum solution under the same constrained size of
the trellis have also been made and show comparable
performance with less computational load.
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Fig. 1. Transition response to the jitter noise (De*G) for

EEPR4 equalized channel (amplitude of the response is
normalized to the value at sampling time k=0).
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Fig. 2. BER curves for a Lorentzian channel at Du=25
with 90% jitter and 10% additive noise (VAR, MUL and
ADD represent the schemes with modified branch
metrics described in (3), (4) and (5), respectively).
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