Lysophosphatidylcholine Suppresses the Expression of Phr1p and Pra1p, Surface Proteins Involved in the Morphogenesis of Candida albicans

  • Shin, Duck-Hyang (Department of Life Science, College of Natural Sciences, Ewha Women University) ;
  • Choi, Won-Young (Department of Life Science, College of Natural Sciences, Ewha Women University) ;
  • Yoo, Yung-Joon (Department of Life Science, Kwangju Institute of Science and Technology (K-JIST)) ;
  • Kim, Min-Kyoung (Department of Life Science, College of Natural Sciences, Ewha Women University) ;
  • Choi, Won-Ja (Department of Life Science, College of Natural Sciences, Ewha Women University)
  • Published : 2004.08.01

Abstract

Candida albicans has become the most important human pathogen in immunocompromised patients. One important feature of the pathogenicity in C. albicans is the morphological transition from yeast to hyphae. Previously, we reported that lysophosphatidylcholine (Lyso-PC) suppressed the hyphal transition through the MAP kinase pathway (Min et al., 2001). Therefore, it should be useful to examine the unknown genes involved in the MAP kinase pathway. As a way to identify target genes of Lyso-PC in hyphal suppression, this present study exploited two-dimensional electrophoresis. It was revealed that Lyso-PC suppressed expression of Phr1p and Pra1p, surface proteins involved in the morphogenesis.

Keywords

References

  1. Science v.277 Control of filament formation in Candida albicans by the transcriptional repressor TUP1 Braun, B. R.;A. D. Johnson https://doi.org/10.1126/science.277.5322.105
  2. Genetics v.155 TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans Braun, B. R.;A. D. Johnson
  3. Trends Microbiol. v.7 Regulatory networks controlling Candida albicans morphogenesis Brown, A. J. P.;N. A. R. Gow https://doi.org/10.1016/S0966-842X(99)01556-5
  4. Biochem. Biophys. Res. Commun. v.289 Augmented expression of peroxiredoxin I in lung cancer Chang, J. W.;H. B. Jeon;J. H. Lee;J. S. Yoo;J. S. Chun;J. H. Kim;Y. J. Yoo https://doi.org/10.1006/bbrc.2001.5989
  5. Cell v.39 Lariat structures are in vivo intermediates in yeast pre-mRNA splicing Domdey, H.;B. Apostol;R. J. Lin;A. Newman;E. Brody;J. Abelson https://doi.org/10.1016/0092-8674(84)90468-9
  6. Microbiology v.146 Transcription factors in Candida albicans-enviromental control of morphogenesis Ernst, J. F. https://doi.org/10.1099/00221287-146-8-1763
  7. J. Bacteriol. v.181 no.22 PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper crosslinking of beta-1,3- and beta-1,6-glucans Fonzi, W.
  8. Clin. Microbiol. Rev. v.9 no.4 Epidemiology of nosocomial fungal infections Fridkin, S.;W. Jarvis
  9. Infect. Immun. v.63 no.11 Reduced virulence of Candida albicans PHR1 mutants Ghannoum, M. A.;B. Spellberg;S. M. Saporito-Irwine;W. A. Fonzi
  10. J. Microbiol. Biotechnol. v.13 no.1 Identification of lactic acid bacteria in KImchi using SDS PAGE profiles of whole cell proteins Kim, T. W.;S. H. Jung;J. Y. Lee;S. K. Choi;S. H. Park;J. S. Jo;H. Y. Kim
  11. Trends Microbiol. v.6 Candida albicans hyphal formation and virulence: Is there a clearly defined role? Kobayashi, S. D.;J. E. Cutler https://doi.org/10.1016/S0966-842X(98)01218-9
  12. Curr. Opin. Cell Biol. v.7 Budding yeast morphogenesis: Signaling, cytoskeleton and cell cycle Kron, S. J.;N. A. Gow https://doi.org/10.1016/0955-0674(95)80069-7
  13. Science v.266 Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog Liu, H.;J. Kohler;G. R. Fink https://doi.org/10.1126/science.7992058
  14. Cell v.90 no.5 Nonfilamentous C. albicans mutants are avirulent Lo, H. J.;J. R. Kohler;B. DiDomenico;D. Loebenberg;A. Cacciapuoti;G. R. Fink https://doi.org/10.1016/S0092-8674(00)80358-X
  15. Biochim. Biophys. Acta v.1531 Lysophosphatidylcholine derived from deer antler extract suppresses hyphal transition in Candida albicans through MAP kinase pathway Min, J. Y.;Y. J. Lee;Y. A. Kim;H. S. Park;S. Y. Han;G. J. Jhon;W. J. Choi https://doi.org/10.1016/S1388-1981(01)00088-9
  16. Curr. Opin. Microbiol. v.1 Dimorphism and virulence in Candida albicans Mitchell, A. P. https://doi.org/10.1016/S1369-5274(98)80116-1
  17. J. Biol. Chem. v.275 Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall Mouyna, I.;T. Fontaine;M. Vai;M. Monod;W. A. Fonzi;M. Diaquin;L. Popolo;R. P. Hartland;J. P. Latge https://doi.org/10.1074/jbc.275.20.14882
  18. Mol. Cell. Biol. v.17 PHR2 of Candida albicans encodes a functional homolog of the pH-regulated PHR1 with an inverted pattern of pH-dependent expression Muhlschlegel, F. A.;W. A. Fonzi https://doi.org/10.1128/MCB.17.10.5960
  19. ASM NEWS v.60 Candida species and virulence Odds, F. C.
  20. Electrophoresis v.21 Cross-species identification of novel Candida albicans immunogenic proteins by combination of two-dimensional polyacrylamide gel electrophoresis and mass spectrometry Pardo, M.;M. Ward;A. Pitarch;M. Sanchez;C. Nombela;W. Blackstock;C. Gil https://doi.org/10.1002/1522-2683(20000701)21:13<2651::AID-ELPS2651>3.0.CO;2-3
  21. J. Microbiol. Biotechnol. v.8 no.3 Deer antler extract selectively suppresses hyphal growth in dimorphic fungus, Candida albicans Park, H. S.;G. J. Jhon;W. J. Choi
  22. J. Microbiol. Biotechnol. v.8 no.4 Hyphal growth inhibition by deer antler extract mimic the effect of chitin synthase deletion in Candida albicans Park, H. S.;G. J. Jhon;W. J. Choi
  23. Electrophoresis v.20 no.4-5 Two-dimensional gel electrophoresis as analytical tool for identifying Candida albicans immunogenic proteins Pitarch, A.;M. Pardo;A. Jimenez;J. Pla;C. Gil;M. Sanchez;C. Nombela https://doi.org/10.1002/(SICI)1522-2683(19990101)20:4/5<1001::AID-ELPS1001>3.0.CO;2-L
  24. Mol. Cell. Biol. v.15 PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis Saporito-Irwin, S. M.;C. E. Birse;P. S. Sypherd;W. A. Fonzi https://doi.org/10.1128/MCB.15.2.601
  25. J. Bacteriol. v.180 Cloning and characterization of PRA1, a gene encoding a novel pH-regulated antigen of Candida albicans Sentandreu, M.;M. V. Elorza;R. Sentandreu;W. A. Fonzi
  26. Infect. Immun. v.67 Chlamydospore formation in Candida albicans requires the Efg1p morphogenetic regulator Sonneborn, A.;D. Bockmuhl;J. F. Ernst
  27. EMBO J. v.16 Efg1, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi Stoldt, V. R.;A. Sonneborn;C. Leuker;J. F. Ernst https://doi.org/10.1093/emboj/16.8.1982
  28. Yeast v.20 Identification of proteins expressed highly in the hyphae of Candida albicans by two-dimensional electrophoresis Choi, W. Y.;Y. J. Yoo;M. K. Kim;D. H. Shin;H. B. Jeon;W. J. Choi https://doi.org/10.1002/yea.1022