Anti-Obesity and Hypolipidemic Effects of Dietary Levan in High Fat Diet-Induced Obese Rats

  • Kang, Soon-Ah (Department of Molecular Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Hong, Kyung-Hee (Asan Institute for Life Science, Samcheok National University) ;
  • Jang, Ki-Hyo (Department of Food & Nutrition, Samcheok National University) ;
  • Kim, So-Hye (Health Medical Center, Seoul National University Bundang Hospital) ;
  • Lee, Kyung-Hee (Department of Food Management, Kyung Hee University) ;
  • Chang, Byung-Il (RealBio Tech Co. Ltd.) ;
  • Kim, Chul-Ho (Biotechnology Research Division, KRIBB) ;
  • Choue, Ryo-Won (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University)
  • Published : 2004.08.01

Abstract

We found previously that dietary high fat caused obesity, and levan supplementation to the regular diet reduced adiposity and serum lipids. In the present study, we examined the effects of levan [high-molecular-mass $\beta$-(2,6)-linked fructose polymer] supplement on the development of obesity and lipid metabolism in rats fed with high-fat diet. Thus, to determine whether the dietary levan may have the anti-obesity and hypolipidemic effects, 4-wk-old Sprague Dawley male rats were fed with high-fat diet for 6 wk to induce obesity, and subsequently fed with 0, 1, 5, or 10% levan supplemented high-fat diets (w/w) for another 4 wk. For the comparison, a normal control group was fed with AIN-76A diet. Supplementation with levan resulted in a significant reduction of high-fat-induced body weight gain, white fat (i.e., epididymal, visceral, and peritoneal fat) development, adipocyte hypertrophy, and the development of hyperinsulinemia and hyperlipidemia in a dose-dependent manner. Serum triglyceride and free fatty acid levels were greatly reduced by levan supplementation. Serum total cholesterol level was reduced, whereas the HDL cholesterol level was increased by dietary levan. The expression of uncoupling protein (UCP) was increased by dietary high fat, and was further induced by levan supplementation. The mRNA level of UCP1, 2, and 3 in brown adipose tissue (BAT) and UCP3 in skeletal muscle was upregulated in rats fed with dietary levan. In conclusion, upregulated UCP mRNA expression may contribute to suppression of development of obesity through increased energy expenditure. The present results suggest that levan supplementation to the diet is beneficial in suppressing diet-induced obesity and hyperlipidemia.

Keywords

References

  1. Nutr. Res. v.20 Effects of dietary inulin on serum lipids, blood glucose and the gastrointestinal environment in hypercholesterolemic men Causey, J. L.;J. M Feirgat;D. D. Gallaher;B. C. Tungland;J. L. Slavin https://doi.org/10.1016/S0271-5317(99)00152-9
  2. J. Nutr. v.131 Chronic docosahexaenoic acid intake enhances expression of the gene for uncoupling protein 3 and affects pleiotropic mRNA levels in skeletal muscle in aged C57BL/6NJcl mice Cha, S. H.;A. Fukushima;K. Sakuma;Y. Kagawa https://doi.org/10.1093/jn/131.10.2636
  3. Proc. Soc. Exp. Biol. Med. v.175 Propionate may mediate the hypocholesterolemic effects of certain soluble plant fibers in cholesterol-fed rats Chen, W. J .L.;J. W. Anderson;D. Jenings
  4. Fukuoka Joshi Daikaku Kaseigakuby Kiyo v.16 Effect of polysaccharide produced by Bacillus natto of alcohol extract of yeast on the lipid metabolism of rats Cho, S.;H. Jujii;A. Shiraishi
  5. Nature v.406 Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean Clapham, J. C.;J. R. Arch;H. Chapman;A. Haynes;C. Lister;G. B. Moore;V. Piercy;S. A. Carter;I. Lehner;S. A. Smith https://doi.org/10.1038/35019082
  6. Eur. J. Clin. Nutr. v.51 A new look at dietary carbohydrate: Chemistry, physiology and health Cummings, J. H.;M. B. Roberfroid https://doi.org/10.1038/sj.ejcn.1600427
  7. J. Nutr. v.129 Biochemical basis of oligofructose-induced hypolipidemia in animal models Delzenne, N. M.;N. N. Kok https://doi.org/10.1093/jn/129.7.1467S
  8. Lebensm. Wiss. Technol. v.27 Physiological effects of nondigestible oligosaccharides Delzenne, N. M.;M. B. Roberfroid https://doi.org/10.1006/fstl.1994.1001
  9. J. Biol. Chem. v.275 Lack of obesity and normal response to fasting and thyroid hormone in mice lacking uncoupling protein-3 Gong, D. W.;S. Monemdjou;O. Gavrilova;L. R. Leon;B. Marcus-Samuels;C. J. Chou;C. Everett;L. P. Kozak;C. Li;C. Deng https://doi.org/10.1074/jbc.M910177199
  10. J. Microbiol. Biotechnol. v.12 Molecular characterization of levansucrase gene from Pseudomonas aurantiaca S-4830 and its expression in Escherichia coli Jang, E. K.;K. H. Jang;I. Koh;I. H. Kim;S. A. Kang;C. H. Kim;S. D. Ha;S. K. Rhee
  11. J. Microbiol. Biotechnol. v.13 Prebiotics properties of levan in rats Jang, K. H.;S. A. Kang;Y. Cho;Y. Y. Kim;Y. J. Lee;K. Hong;K. W. Seong;S. H. Kim;C. H. Kim;S. K. Rhee;S. D. Ha;R. W. Choue
  12. Korean J. Nutr. v.35 The effects of levan and inulin on the growth of lactic acidproducing bacteria and intestinal conditions in rats Jang, K. H.;S. A. Kang;Y. Cho;Y. Y. Kim;Y. J. Lee;K. Hong;E. K. Jang;C. H. Kim;R. W. Choue
  13. Korean J. Nutr. v.34 Effects of high fat diet on serum leptin and insulin level and brown adipose tissue UCP1 expression in rats Hong, K. H.;S. A. Kang;S. H. Kim;R. W. Choue
  14. J. Korean Soc. Food Sci. Nutr. v.31 Effects of low level of levan feeding on serum lipids, adiposity and UCP expression in rats Kang, S. A.;K. H. Hong;K. H. Jang;S. H. Kim;E. K. Jang;C. H. Kim;R. W. Choue https://doi.org/10.3746/jkfn.2002.31.5.788
  15. Korean J. Nutr. v.35 Effects of dietary levan on adiposity, serum leptin and UCP expression in obese rats fed high fat Kang, S. A.;K. H. Hong;S. H. Kim;K. H. Jang;C. H. Kim;R. W. Choue
  16. J. Lipid Res. v.23 Dietary fiber Kay, R. M.
  17. Biotechnol. Bioeng. v.38 Continous culture system for production of biopolymer levan using Erwinia herbicola Keith, K.;B. Wiely;D. Ball;S. Arcidiacono;D. Zorfass;J. Mayer;D. Kaplan https://doi.org/10.1002/bit.260380515
  18. J. Microbiol. Biotechnol. v.13 Enzymatic characterization of a recombinant levansucrse from Rahnella aquatilis ATCC 15552 Kim. H. J.;H. E. Park;M. J. Kim;H. G. Lee;J. Y. Yang;J. H. Cha
  19. J. Microbiol. Biotechnol. v.13 $^{31}P$ nuclear magnetic resonance studies of acetic inhibition of ethanol production by strains of Zymomonas mobilis Kim, I. S.;K. D. Barrow;P. L. Rogers
  20. J. Microbiol. Biotechnol. v.11 Cloning and sequence analysis of a levansucrse gene from Rahnella aquatilis ATCC15552 Kim, H. J.;J. Y. Yang;H. G. Lee;J. H. Cha
  21. Metabolism v.45 Dietary oligofructose modifies the impact of fructose on hepatic triacylglycerol metabolism Kok, N. N.;H. S. Taper;N. M. Delzenne https://doi.org/10.1016/S0026-0495(96)90186-9
  22. J. Appl. Toxicol. v.18 Oligofructose modulates lipid metabolism alterations induced by a fat-rich diet in rats Kok, N. N.;H. S. Taper;N. M. Delzenne https://doi.org/10.1002/(SICI)1099-1263(199801/02)18:1<47::AID-JAT474>3.0.CO;2-S
  23. Eur. J. Clin. Nutr. v.50 Effects on lipid metabolism and mechanisms of action Lairon, D.
  24. Proc. Soc. Exp. Biol. Med. v.156 A reliable photomicrographic method for determining fat cell size and number: Application to dietary obesity Lavau, M.;C. Susin;J. Knittle;H. S. Blanchet;M. R. C. Greenwood
  25. Eur. J. Nutr. v.38 New approaches in the pharmacological treatment of obesity Leonhardt, M.;B. Hrupka;W. Langhans
  26. Nature Med. v.6 Skeletal muscle respiratory uncoupling prevents diet-induced obesity ad insulin resistance in mice Li, B.;L. A. Nolte;J. S. Ju;D. H. Han;T. Coleman;J. O. Holloszy;C. F. Semenkovich https://doi.org/10.1038/80450
  27. Br. J. Nutr. v.74 Differences in propionate induced inhibition of cholesterol and triacylglycerol synthesis between human and rat hepatocytes in primary culture Lin, Y.;R. J. Vonk;M. J. Sloof;F. Kuipers;M. J. Smit https://doi.org/10.1079/BJN19950123
  28. Biochem. Mol. Biol. Int. v.43 Fatty acid composition of brown adipose tissue in dietary obese rats Llado, I.;A. Pons;A. Palou
  29. J. Nutr. v.120 Effects of diets rich in fermentable carbohydrates on plasma lipoprotein levels and on lipoprotein catabolism in rats Mazur, A.;C. Remesy;E. Gueux;M. A. Levrat;C. Demigne https://doi.org/10.1093/jn/120.9.1037
  30. J. Nutr. v.127 Leptin rapidly lowers food intake and elevates metabolic rates in lean and ob/bo mice Mistry, A. M.;A. G. Swcik;D. R. Romsos https://doi.org/10.1093/jn/127.10.2065
  31. Nurt. Res. v.22 Effect of a long-chain fructan Ratfline HP on blood lipids and spontaneous atherosclerosis in low density receptor knockout mice Mortensen, A.;M. Poulsen;H. Frandsen
  32. Biosci. Biotech. Biochem. v.56 Characterization of levansucrase from Rahnella aquatilis JCM-1638 Ohtsuka, K.;S. Hino;T. Fukushima;O. Ozawa;T. Kanematsu;T. Uchida https://doi.org/10.1271/bbb.56.1373
  33. J. Microbiol. Biotechnol. v.12 Hypocholesterolemic effect of CJ90002 in hamsters: A potent inhibitor for aqualene synthase from Paeonia moutan Park, J. K.;H. J. Cho;Y. Lim;Y. H. Cho;C. H. Lee
  34. Biopotymers. Polysaccharides 1: Polysaccharids from Prokeryotes v.5 Levan Rhee, S. K.;K. B. Song;C. H. Kim;B. S. Park;E. K. Jang;K. H. Jang;Erick Vandamme(ed.);Sophie De Baets(ed.);Alexander Steinbuchel(ed.)
  35. Am. J. Physiol. Endocrinol. Metab. v.279 Effect of high-fat diet, surrounding temperature, and enterostatin on uncoupling protein gene expression Rippe, C.;K. Berger;C. Boeirs;D. Ricquier;A. C. Erlanson https://doi.org/10.1152/ajpendo.2000.279.2.E293
  36. J. Parent. Enteral. Nutr. v.14 Metabolicand intestinal effects of short-chain fatty acids Rombeau, J. L.;S. A. Kripke https://doi.org/10.1177/014860719001400507
  37. Nature v.404 Central nervous system control of food intake Schwartz, M. W.;S. C. Woods, Jr.;D. Porte;R. J. Seeley;D. G. Baskin
  38. J. Nutr. v.128 Dietary inulin lowers plasma cholesterol and triacylglycerol and alters biliary bile acid profile in hamsters Trautwein, E. A.;D. Rieckhoff;H. F. Erbersdobler https://doi.org/10.1093/jn/128.11.1937
  39. J. Nutr. v.129 Effects of inulin on lipid parameters in humans Williams, C. M. https://doi.org/10.1093/jn/129.7.1471S
  40. Am. J. Clin. Nutr. v.61 Propionate inhibits incorporation of colonic [1,2-$^{13}$C]acetate into plasma lipids in humans Wolever, T.;P. Spadafora;S. Cunnane;P. Pencharz https://doi.org/10.1093/ajcn/61.6.1241
  41. Proc. Soc. Exp. Biol. Med. v.195 Propionate inhibits hepatocyte lipid synthesis Wright, R. S.;J. W. Anderson;S. R. Briges
  42. J. Nutr. Biochem. v.10 vtro digestibility and fermentability of levan and its hypocholesterolemic effects in rats Yamamoto, Y.;Y. Takahashi;M. Kawano;M. Iizuka;T. Matsumoto;S. Saeki;H. Yamaguchi https://doi.org/10.1016/S0955-2863(98)00077-1
  43. J. Microbiol. Biotechnol. v.12 Hypolipidemic effects of exo- and endo-biopolymers produced from submerged mycelial culture of Ganoderma lucidum in rats Yang, B. K.;S. C. Jeong;C. H. Song
  44. J. Microbiol. Biotechnol. v.12 Hypolipidemic effect of exo-polymer produced in submerged mycelial culture of five different mushrooms Yang, B. K.;J. B. Park;C. H. Song
  45. FASEB J. v.15 Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor ${\alpha}$ in the adult heart Young, M. E.;S. Patil;J. Ying;C. Depre;H. S. Ahuja;G. L. Shipley;S. M. Stepkowski;P. J. A. Davies;H. Taegtmeyer https://doi.org/10.1096/fj.00-0351com