Studies on the Development of a Microbial Cryoprotectant Formulation Using a W/O/W Multiple Emulsion System

  • Published : 2004.08.01

Abstract

A microbial cryoprotectant formulation using a W/O/W multiple emulsion system was developed. The psychrotolerant microorganism, B4, isolated from soil in South Korea, was observed by the drop freezing method, in which the microorganism sample inhibited ice nucleation activity. The antifreeze activity was eliminated when the microorganism sample was treated with protease, indicating that the antifreeze activity was due to the presence of antifreeze protein. The result of the l6S rDNA sequencing indicated the B4 strain was most closely related to a species of the genus Bacillus. Culture broth of B4 strain (Bacillus sp.) and rapeseed oil containing 1 % polyglycerine polyricinolate (PGPR) were used as core and wall material, respectively. The most stable W/O emulsion was prepared at a core/oil ratio of 1:2. The highest W/O/W emulsion stability was achieved when the primary emulsion to external aqueous phase containing 0.5% caster oil polyoxyethylene ether $(COG25^{TM})$ ratio was 1:1. Microcrystalline cellulose showed better W/O/W emulsion stability than other polymer types. The viability of cells in a W/O/W emulsion was higher than free cells during storage at $37^\circ{C}$. An acidic pH and UV exposure decreased the viability of free cells, but cells in W/O/W emulsion were more stable under these conditions.

Keywords

References

  1. Crop Protect. v.17 Effect of simulated solar radiation of conidial germination of Metarhizium anisopliae in different fomulations Alves, R. T.;R. P. Bateman;C. Prior;S. R. Leather https://doi.org/10.1016/S0261-2194(98)00074-X
  2. Plant Physiol. v.113 Purification, characterization, and structural analysis of a plant low-temperature-induced protein Boothe, J. G.;F. D. Sonnichsen;M. D. Beus;A. M. Johnson-Flanagan https://doi.org/10.1104/pp.113.2.367
  3. Formulation of Microbial Biopesticides Burges, H. D.
  4. Colloids and Surfaces A: Physicochemical and Engineering Aspects v.91 Some application of emulsions Chappat, M. https://doi.org/10.1016/0927-7757(94)02976-8
  5. Biophys. J. v.73 Ice-binding mechanism of winter flounder antifreeze proteins Cheng, A.;K. M. Merz https://doi.org/10.1016/S0006-3495(97)78315-2
  6. Biochim. Biophys. Acta v.997 Structures of antifreeze peptides from the antarctic eel pout, Austrolycicthys brachycephalus Cheng, C. C.;A. L. DeVries https://doi.org/10.1016/0167-4838(89)90135-0
  7. Pestic. Sci. v.45 Stability and controlled relese properties of carboxymethylcellulose-encapsulated Bacillus thuringiensis var. israelensis Cokmus, C.;Y. M. Elcin https://doi.org/10.1002/ps.2780450409
  8. Cryobiology v.30 Thermal hysteresis activity in bacteria, fungi, and phylogenetically diverse plants Duman, J. G.;T. M. Olsen https://doi.org/10.1006/cryo.1993.1031
  9. Food Technol. Antifreeze proteins: Properties, mechanism of action, and possible application Feeney, R. E.;Y. Yeh
  10. Lebensm.-Wiss. u-Technol. v.30 Progress in stabilization and transport phenomena of double emulsions in food applications Garti, N. https://doi.org/10.1006/fstl.1996.0176
  11. Nature v.388 no.21 Hyperactive antifreeze protein from beetles Graham, L. A.;Y. C. Lieu;V. K. Waker;P. L. Davies
  12. Biotech. Adv. v.13 no.3 Antifreeze proteins and their potential use in frozen foods Griffith, M.;K. V. Ewart https://doi.org/10.1016/0734-9750(95)02001-J
  13. Physiotogia Plantarum v.100 Antifreeze proteins in winter rye Griffith, M.;M. Antikainen;W. C. Hon;P. M. Maunsbach;X. M. Yu;J. U. Chun;D. S. C. Yang https://doi.org/10.1111/j.1399-3054.1997.tb04790.x
  14. Plant Physiol. v.100 Antifreeze protein produced endogenously in winter rye leaves Griffith, M.;P. A. Daniel;D. S. C. Yang;W. C. Hon;B. A. Moffatt https://doi.org/10.1104/pp.100.2.593
  15. J. Microbiol. Biotechnol. v.13 Identification of genes for biosynthesis of antibacterial compound from Pseudomonas fluorescens B16 and its activity against Ralstonia solanacearum Kim, J. W.;J. G. Kim;B. K. Park;O. H. Choi;C. S. Park;I. G. Hwang
  16. J. Microbiol. Biotechnol. v.4 Bacillus subtilis YB-70 as a biocontrol agent of Fusarium solani causing plant root-rot Kim, Y. S.;H. S. Lim;S. D. Kim
  17. Crop Protect. v.14 Evaluation of oil suspension emulsions of Colletotrichum orbiculare as a mycoherbicide in field trials Klein, T. A.;B. A. Auld;Fang Wang https://doi.org/10.1016/0261-2194(95)00009-B
  18. Curr. Opin. Biotech. v.13 Phyllosphere microbiology Lindow, S. E. https://doi.org/10.1016/S0958-1669(02)00313-0
  19. J. Food Eng. v.22 Antifreeze proteins Lollford,P.J.;C.B.Holt https://doi.org/10.1016/0260-8774(94)90048-5
  20. J. Biol. Chem. v.267 no.23 Structure of an antifreeze polypeptide from the sea raven Ng, N. F. L.;C. L. Hew
  21. Nature v.33 no.23 Inhibition of bacterial ice nucleators by fish antifreeze glycoproteins Parody-Morreale, A.;K. P. Murphy;E. D. Cera;R. Fall;A. L. DeVries;S. J. Gill
  22. J. General Microbiol. v.134 A numerical classification of the genus Bacillus Priest, F. G.;M. Goofellow;C. Todd
  23. J. Control Release v.32 Effect of the emulsion stability on the morphology and porosity of semicrystalline poly L-lactide microparticles prepared by W/O/W double emulsion-evaporation Schugens, Ch.;N. Laruelle;N. Nihant;Ch. Grandfils;R. Jerome;Ph. Teyssie https://doi.org/10.1016/0168-3659(94)90055-8
  24. Bergey's Manual of Determinative Bacteriology(7th Ed.) Bacillus Sneath, P. H. A.;Claus, D.(ed.);Berkeley, R. C. W.(ed.)
  25. Can. J. Microbiol. v.41 Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 Sun, X.;M. Griffith;J. J. Pasternak;B. R. Glick https://doi.org/10.1139/m95-107
  26. Sci. Hortic. v.61 Ice nucleation temperatures in kiwifruit Testolin, R.;G. Costa https://doi.org/10.1016/0304-4238(94)00726-V
  27. Biochim. Biophys. Acta v.1121 Plant thermal hysteresis proteins Urrutia, M. E.;J. G. Duman;C. A. Knight https://doi.org/10.1016/0167-4838(92)90355-H
  28. Can. J. Microbiol. v.44 Isolation and characterization of an antifreeze protein with ice nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR 12-2 Xu, H.;M. Griffth;C. L. Patten;B. R. Glick https://doi.org/10.1139/cjm-44-1-64
  29. J. Microbiol. Biotechnol. v.13 Chemical properties and physiological activities of synnemata of Beauveria bassiana Yoon, C. S.;K. W. Yu;S. H. Bae;H. H. Song;H. S. Park;C. Lee