Synthesis of the Polysaccharide, (1 $\longrightarrow$ 5)-$\alpha$-D-Ribofuranan and Its Catalytic Activities for the Hydrolysis of Phosphates and the Cleavage of Nucleic Acids

  • Han, Man-Jung (Department of Molecular Science and Technology, Ajou University) ;
  • Yoo, Kyung-Soo (Department of Molecular Science and Technology, Ajou University) ;
  • Kim, Young-Heui (Department of Molecular Science and Technology, Ajou University) ;
  • Kim, Hong-Youb (Department of Molecular Science and Technology, Ajou University) ;
  • Shin, Hyun-Joon (Department of Molecular Science and Technology, Ajou University) ;
  • Chang, Ji-Young (School of Materials Science and Engineering, and Hyperstructured Organic Materials Research Center, Seoul National University)
  • Published : 2004.08.01

Abstract

The polysaccharide, (1\longrightarrow5)-$\alpha$-D-ribofuranan, was synthesized by a cationic ring-opening polymerization of 1,4-anhydro-2,3-di-O-benzyl-$\alpha$-D-ribopyranose with the aid of boron trifluoride etherate and subsequent debenzylation. This polysaccharide catalyzed the hydrolysis of ethyl p-nitrophenyl phosphate, uridylyl(3'\longrightarrow5')uridine ammonium salt, and 4-tert-butylcatechol cyclic phosphate N-methyl pyridinium. The polymer also catalyzed the cleavage of nucleic acids (DNA and RNA). The hydrolysis of ethyl p-nitrophenyl phosphate in the presence of the polymer was accelerated by 1.5 ${\times}$ 10$^3$ times relative to the uncatalyzed reaction. The catalytic activity was attributable to the vic-cis-diols of the riboses being located inside the active center that is formed by polymer chain folding; these diols form hydrogen bonds with two phosphoryl oxygen atoms of the phosphates so as to activate the phosphorus atoms to be attacked by nucleophile ($H_2O$).

Keywords

References

  1. Adv. Polym. Sci. v.20 T. Kunitake;Y. Okahata https://doi.org/10.1007/BFb0023971
  2. Polymer-supported Reactions in Organic Synthesis T. Kunitake;P. Hode(ed.);D. C. Sherrington(ed.)
  3. J. Am. Chem. Soc. v.85 C. G. Overberger;T. St. Pierre;N. Vorchheimer;S. Yaroslavsky https://doi.org/10.1021/ja00904a056
  4. Macromolecules v.5 C. G. Overberger;Y. Okamoto https://doi.org/10.1021/ma60028a006
  5. Science v.223 C. Guerrier-Takada;S. Altman https://doi.org/10.1126/science.6199841
  6. Chem. Biol. v.1 R. R. Breaker;G. F. Joyce https://doi.org/10.1016/1074-5521(94)90014-0
  7. J. Amer. Chem. Soc. v.100 R. Breslow;J. B. Doherty;G. Guillot;C. Lipsey https://doi.org/10.1021/ja00478a052
  8. J. Am. Chem. Soc. v.102 R. Breslow;P. Bovy;C. L. Hersh https://doi.org/10.1021/ja00526a072
  9. Angew. Chem., Int. Ed. v.39 M. J. Han;K. S. Yoo;J. Y. Chang;T.-K. Ha https://doi.org/10.1002/(SICI)1521-3773(20000117)39:2<347::AID-ANIE347>3.0.CO;2-Q
  10. Chem. Commun. M. J. Han;K. S. Yoo.;T. J. Cho;J. Y. Chang;Y. J. Cha;S. H. Nam
  11. Macromolecules v.30 M. J. Han;K. S. Yoo;K. H. Kim;K. H. Lee;J. Y. Chang https://doi.org/10.1021/ma970605o
  12. J. Chem. Soc. T. A. Khwaja;C. B. Resse;J. C. M. Stewart
  13. J. Am. Chem. Soc. v.105 T. Uryu;J. Yamanouchi;T. Kato;S. Higuchi;K. Matsuzaki https://doi.org/10.1021/ja00361a021
  14. Macromolecules v.14 T. Uryu;K. Kitano;K. Ito;J. Yamanouchi;K. Matsuzaki https://doi.org/10.1021/ma50002a001
  15. J. Mol. Struc. (Theochem) v.574 T.-K. Ha;O.M. Suleimenov;M. J. Han https://doi.org/10.1016/S0166-1280(01)00520-6
  16. Biochim. Biophys. Res. Commun. v.215 P. Chambon;J. D. Weill;J. Doly;M. T. Strosser;P. Mandel
  17. Biophys. Acta v.138 T Sugimura;S. Fujimura;S. Hasegawa;Y. Kawamura https://doi.org/10.1016/0005-2787(67)90507-2
  18. Ann. Rev. Biochem. v.54 K. Ueda;O. Hayaishi https://doi.org/10.1146/annurev.bi.54.070185.000445
  19. Mol. Cell. Biochem. v.122 D. Lautier;J. Lagueus;J. Thibodeau;L. Mennard;G. G. Poirier https://doi.org/10.1007/BF01076101
  20. Mol. Cell. Biochem. v.138 R. Alvarez-Gonzalez;G. Pacheco-Rodriguez;H. Mendoza-Alvarez https://doi.org/10.1007/BF00928440
  21. Biochem. Biophys. Res. Commun. v.236 H. Maruta;N. Matsumura;S. Tanuma https://doi.org/10.1006/bbrc.1997.6910
  22. Biochemistry v.33 M. S. Satoh;G. G. Poirier;T. Lindahl https://doi.org/10.1021/bi00189a012
  23. J. Biol. Chem. v.273 C. M. Simbulan-Rosenthal;D. S. Rosenthal;S. Iyer;A. H. Boulares;M. E. Smulson https://doi.org/10.1074/jbc.273.22.13703
  24. J. Biol. Chem. v.269 M. Malanga;F. R. Althaus
  25. Biochemistry v.33 M. S. Satoh;G. G. Poirier https://doi.org/10.1021/bi00189a012