A Dye Tracer Study of Infiltration Pattern in a Residual Soil Developed from Granite

화강암 기원 잔적토양에서 염료추적자의 침투 유형에 관한 연구

  • Published : 2004.08.01

Abstract

Understanding flow pattern of water and solute in subsurface is essential for the reduction and prevention of contamination of soil and groundwater and for the investigation and remediation of contaminated site. The objective of this study is to examine the infiltration pattern in a soil developed from the Jurassic granite using (Brilliant Blue FCF $C_{37}H_{34}N_{2}Na_{2}O_{9}S_{3}$), the nonfluorescent and nontoxic food dye. All image processing was conducted using geographic image processing software, ER Mapper, Version 6.2. The dye coverage was determined by counting the stained pixels in the photographs (80${\times}$80cm, 80TEX>${\times}$5cm) for the vertical and horizontal view. A homogeneous matrix flow occurred in the A horizon with weak, medium granular structure and fingering at the interface of finer-textured A horizon and coarser-textured C horizon. Pegmatitic vein originated from the granite and plant root in C horizon induced preferential flow.

지표 및 심토환경에서 물과 용액의 유동특성을 파악하는 것은 토양 및 지하수의 오염을 저감하고 방지하거나 기 오염 지역을 조사하고 정화하는데 있어서 필수적인 요소이다. 본 연구에서는 이 비형광, 비독성의 식용색소인 청색1호(Brilliant Blue FCF, $C_{37}H_{34}N_{2}Na_{2}O_{9}S_{3}$)를 염료 추적자로 이용하여 화강암에서 발달된 잔적토양에서의 침투 유형 및 그 특성을 조사하였다. 디지털 촬영된 수직 및 수평 착색영상은 지형정보 영상처리 프로그램인 ER Mapper, Version6.2를 이용하여 염료착색범위(dye coverage)로 전환되었다. 균질기반유동(homogeneous matrix flow)은 미약 입상 구조를 보이는 A 층위에서 발생하였으며, 상대적으로 세립조직인 A층위와 조립조직인 C층위의 경계에서는 선침투류(先浸透流, fingering)의 특징을 보여주었다. 모암인 화강암 조직의 기원인 거정질 광맥(pegmatitic vein)과 식물 뿌리는 C 층위에서 선택적 유동(preferential flow)을 유도하였음을 확인하였다.

Keywords

References

  1. 한국정밀토양도: 대전시 및 대덕군 (25000 : 1) 농업기술연구소
  2. 한국지질도: 유성도폭 (50000 : 1) 자원개발연구소
  3. Geoderma. v.41 Water and solute movement in soil as influenced by macropore characteristics: 1. Macropore continuity Allaire-Leung, S.E.;S.C. Gupta;J.F. Macropore
  4. Geoderma. v.41 Water and solute movement in soil as influenced by macropore characteristics: 2. Macropore tortuosity Allaire-Leung, S.E.;S.C. Gupta;J.F. Moncrief
  5. Soil Sci. Soc. Am. J. v.54 Laboratory tests of a theory of fingering during infiltration into layered soils Baker, R.S.;D. Hillel https://doi.org/10.2136/sssaj1990.03615995005400010004x
  6. Water Resources Research v.18 Macropores and water flow in soils Beven, K.J.;P.F. Germann https://doi.org/10.1029/WR018i005p01311
  7. Geoderma. v.56 Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure Bisdom, E.B.A.;L.W. Dekker;J.F.T. Schoute https://doi.org/10.1016/0016-7061(93)90103-R
  8. J. of Hydrology. v.191 The influence of artificial macropores on water and solute transport in laboratory soil columns Buttle, J.M.;D.G. Leigh https://doi.org/10.1016/S0022-1694(96)03079-X
  9. Water Resour. Res. v.30 How water moves in a water repellent sandy soil. 1. Potential and actual water repellency Dekker, L.W.;C.J. Ritsema https://doi.org/10.1029/94WR00749
  10. J. of Arid Envrion. v.50 Root channel macropores enhance downward movement of water in a Mojave Desert ecosystem Devitt, D.A.;S.D. Smith https://doi.org/10.1006/jare.2001.0853
  11. Soil Sci. Soc. Am. J. v.59 Tracer characteristics of Brilliant blue FCF Flury, M.;W.A. Jury https://doi.org/10.2136/sssaj1995.03615995005900010003x
  12. Water Resour. Res. v.30 Susceptibility of soils to preferential flow of water: a field study Flury, M.;H. Fluhler;W.A. Jury;J. Leuenberger https://doi.org/10.1029/94WR00871
  13. Soil and Tillage Res. v.63 Infiltration patterns into two soils under conventional and conservation tillage: influence of the spatial distribution of plant root structures and soil animal activity Hangen, E.;U. Buczko;O. Bens;J. Brunotte;R.F. Huttl https://doi.org/10.1016/S0167-1987(01)00234-3
  14. Preferential flow. Proc. Natl. Symp. Chicago, IL Physical and chemical processes affecting preferential flow Helling, C.S.;T.J. Gish;T.J. Gish(ed.);A. Shirmohammadi(ed.)
  15. Soil Sci. Soc. Am. Proc. v.36 Wetting front instability in layered soils Hill, D.E.;J.Y. Parlange https://doi.org/10.2136/sssaj1972.03615995003600010033x
  16. Geoderma v.108 Indirect estimation of near-saturated hydraulic conductivity from readily available soil information Jarvis, N.J.;Zavattaro, L.;Rajkai, K.;Reynolds, W.D.;Olsen, P.-A.;McGechan, M.;Meche, M.;Mohanty, B.;Leeds-Harrison, P.B.;Jacques, D. https://doi.org/10.1016/S0016-7061(01)00154-9
  17. Water Resour. Res. v.22 Drainage from a uniform soil layer on a hillslope Stagnitti, F.;M.B. Parlange;T.S. Steenhuis;J.Y. Parlange https://doi.org/10.1029/WR022i005p00631
  18. Ann. Geophys. v.3 On describing and predicting the hydraulic properties of unsaturated soils van Genuchten, M.T.;Nielsen, D.R.
  19. Water Res. Res. v.36 Funneled flow mechanism in a sloping layered soil Walter, M.T.;J.S. Kim;T.S. Steenhuis;J.Y. Parlange;A. Heilg;R.D. Braddock;J.S. Selker;J. Boll https://doi.org/10.1029/1999WR900328
  20. Hydrol. Process. v.17 An experimental tracer study of the role of macropores in infiltration in grassland soils Weiler, M.;F. Naef https://doi.org/10.1002/hyp.1136
  21. Geoderma. v.100 Characterizing preferential transport during flood irrigation of a heavy clay soil using the dye Vitasyn Blau Yasuda, H.;R. Berndtsson;H. Persson;A. Bahri;K. Takuma https://doi.org/10.1016/S0016-7061(00)00080-X