DOI QR코드

DOI QR Code

Metabolism Activity of Bifidobacterium spp. by D.Ps of Konjac Glucomannan Hydrolysates

Konjac Glucomannan 가수분해 올리고당의 중합도별 Bifidobacterium spp.에 대한 대사활성

  • 최준영 (경원대학교 생명공학부 분자ㆍ식품생명공학전공) ;
  • 박귀근 (경원대학교 생명공학부 분자ㆍ식품생명공학전공)
  • Published : 2004.08.01

Abstract

Bacillus sp. $\beta$-mannanase was purified by DEAE-sephadex ion exchange column chromatography. The partially purified P-mannanase exhibited maximum activity at pH 6.0 and 5$0^{\circ}C$, and was stable at a pH range of 5.5 to 7.0, and at temperature between 30 to 5$0^{\circ}C$. Konjac glucomannan was hydrolyzed by the purified $\beta$-mannanase, and then hydrolysates separated by 1st activated carbon column chromatography and 2nd sephadex G-25 gel filtration. The main hydrolysates were composed of D.P 5 and 7 glucomannooligosaccharides by TLC and FACE method. To investigate the effects of guar gum glucomannooligosaccharides on the in vitro growth of B. longum, B. bifidum, B. infantis, B. adolescentis, B. animalis, and B. breve, Bifidobacterium spp. were cultivated individually on the modified-MRS medium containing carbon SOUTce such as D.P 5, and D.P 7 glucomannooligosaccharides, respectively. B. longum grew up 4.6-fold and 5.3-fold more effectively by the replacement of D.P 5 and 7 glucomannooligosaccharides as the carbon source in a comparasion of standard MRS. Also, B. breve and B. animalis slightly grew up by the treatment of D.P 5 glucomannooligosaccharide.

DEAE-sephadex ion exchange column chromatography에 의해 Bacillus sp. 유래 h-mannanase의 정제를 수행하여 비활성은 21.57 units/mg, 정제배율은 93.78배를 나타내었다. 최적 온도는 5$0^{\circ}C$, 최적 pH는 6.0이며, 온도 안정성에서는 30∼5$0^{\circ}C$에서는 90%이상의 잔존활성을 나타내었고,70∼8$0^{\circ}C$에서는 30%이하의 잔존활성을 나타내었다. pH 안정성에서는 pH 5.5∼7.0에서 100%의 잔존활성을 나타낸 반면 pH 2.0∼4.0에서는 40%이하로 감소되 었다. 정제효소에 의해 konjac glucomannan을 가수분해하여 1차 activated carbon column chromatography와 2차 sephadex G-25 gel filtration 에 의해 당가수분해물을 분리 회수하여 TLC및 FACE에 의해 주요 당가수분해물은 중합도 5와 7로 확인되었다. B. iongum, B. btfidum, B. infantis, E. adolescentis, B. animalis, B. breve의 생육활성에 대한 중합도5와7의 영향을 검토하기 위하여 modified-MRS배지상에 탄소원으로 중합도 5와 7을 대체하여 생육활성을 비교한 결과 B. longum의 경우 특징적으로 각각 4.67, 5.33배의 상대활성을 나타내어 우수한 생육활성을 나타내었다. 또한 B. breve에 대해서는 중합도 5 glucomannooligosaccharide를 처리시 2.42배의 생육활성을 나타내었으나 B. infantis와 B. adolescentis에 대해서는 중합도 5와 7의 올리고당을 탄소원으로 대체시 오히려 생육활성이 현저히 감소되었다.

Keywords

References

  1. Kobayashi Y, Echizen R, Mutai M. 1984. Intestinal flora and dietary factors. Processings of the 4th RIKEN symposium on intestinal flora. Japan Scientific Societies press, Tokyo. p 69.
  2. Hoffmann K, Bircher J. 1969. Ver nderungen der bakteriellen Darmbesiedlung nach Lactulose-gaben. Schweiz Med Wschr 99: 608-613.
  3. Gyrgy P, Norris RF, Rose CS. 1954. Bifidus factor. I. A variant of Lactobacillus bifidus requiring a special growth factor. Arch Biochem Biophys 4: 193-198.
  4. Haenel H, Bending J. 1975. Growth effect of branched oligosaccharides on principal intestinal bacteria. In Progress in food and nutrition science. Pergamon Press, Oxford, New York. Vol 1, p 21-27.
  5. Kusakabe I, Takahashi R, Kusama S, Murakami K, Maekawa A, Suzuki T. 1985. Struture of the glucomannooligosaccharides resulting from the hydrolysis of konjac glucomannan produced by a $\beta$-mannanase from Streptomyces sp. Agic Biol Chem 48: 2943-2950.
  6. Moon JW, Choi SH, Shin YK, Lee SW, Kang KH. 1988. Effect on the growth of Bifidobacterium spp. by transgalactooligosaccharides produced with $\beta$-galactosidase. Korean J Dairy Sci 20: 283-289.
  7. Ohtsuka KY, Benno YK, Endo H, Ueda OT, Mitsuoka T, Kobayashi H. 1989. Effect of 4'-galactosyllactose intake on human fecal microflora. Bifidus 2: 143-149.
  8. Akino T, Nakamura N, Horikoshi K. 1987. Poduction of $\beta$-mannosidase and $\beta$-mannanase by an alkalophilic Bacillus sp. Appl Microbiol Biotechnol 26: 323-327.
  9. Akino T, Nakamura W, Horikoshi K. 1998. Chariacterization of three $\beta$-mannanase by an alkalophilic Bacillus sp. Agric Biol Chem 52: 773-779.
  10. Marga F, Ghakis C, Duport C, Morosoli R, Kluefel D. 1996. Improved production of mannanase by Streptomyces lividans. Appl Environ Microbiol 62: 4656-4658.
  11. Mitsuoka T. 1982. Recent trends in research on intestinal flora. Bifidobacteria Microflora 1: 3-11. https://doi.org/10.12938/bifidus1982.1.1_3
  12. Mitsuoka T. 1990. Bifidobacteria and their role in human health. J Ind Microbol 6: 263-269. https://doi.org/10.1007/BF01575871
  13. Min DS, Chung YJ, Bai DH, Yu JH. 1995. Production of $\beta$-mannanase by an akali-tolerant Bacillus sp. YA-14. Foods Biothchnol 4: 285-292.
  14. Lowry OH, Rosebrough NJ, Fan AL, Randall RJ. 1951. Protein measurement with the folin phenol reagent. J Biol Chem 193: 265-271.
  15. Miller GL. 1959. Use of dinitrosalicylic acid regent for determination of reducing sugar. Anal Chem 31: 426-428. https://doi.org/10.1021/ac60147a030
  16. Choi JY, Park GG. 2004. Purification of Bacillus sp. $\beta$-mannanase and the metabolism activity of Bifidobacterium spp. by D.Ps of guar gum hydrolysates. Kor J Microbiol Biotechnol (in press).
  17. McCleary BV. 1982. Purification and properties of a mannoside mannohydrolase from guar. Carbohydr Res 101: 74-92.
  18. Jackson P. 1996. Carbohydrate electrophoresis methods by the induced ANTs. Mol Biotechnol 5: 101-123. https://doi.org/10.1007/BF02789060
  19. Kim WD, Kobayashi O, Kaneko S, Sakakibara Y, Park GG, Kusakabe I, Tanaka H, Kobayashi H. 2002. $\alpha$-Galactosidase from cultured (Oryza sativa L. var. Nipponbare) cells. Phytochemistry 61: 621-630. https://doi.org/10.1016/S0031-9422(02)00368-0

Cited by

  1. Screening of Hemicellulose Oligosaccharides and Preparation of the Recipe for Modified MRS Medium by the Replacement of Carbon Source vol.51, pp.6, 2008, https://doi.org/10.3839/jabc.2008.042
  2. Preparation of Carbon Source for Modified MRS Medium and Antibacterial Activity of Bacteriocin from L. plantarum vol.23, pp.1, 2004, https://doi.org/10.13050/foodengprog.2019.23.1.47