AN EPICYCLOIDAL BOUNDARY OF THE MAIN COMPONENT IN THE DEGREE-n BIFURCATION SET

  • Published : 2004.09.01

Abstract

It is known that the parametric boundary equation for the main component in the Mandelbrot set represents a cardioid. We derive an epicy-cloidal boundary equation of the main component in the degree-n bifurcation set by extending the parameter which describes the cardioid in the Mandelbrot set. Computational results as well as some useful properties are presented together with the programming source codes written in Mathematica. Various boundaries are displayed for $2\leqn\leq7$7 and show a good agreement with the theory presented here. The known boundary equation enables us to significantly reduce the construction time for the degree-n bifurcation set.

Keywords