차수 3인 트리에서 가장 긴 비음수 경로를 찾는 알고리즘

Algorithm for Finding a Longest Non-negative Path in a Tree of Degree 3

  • 발행 : 2004.08.01

초록

각 에지에 무게(양수, 음수, 0 가능)가 주어진 트리에서, 경로의 에지들의 무게의 합이 비음수이면서 길이가 가장 긴 경로를 구하는 문제를 해결하고자 한다. 차수가 3인 트리에서 가장 긴 비음수 경로를 찾는 Ο(n log n) 시간 알고리즘을 제시한다. n은 트리가 가지는 노드의 수이다.

In an edge-weighted(positive, negative, or zero weights are possible) tree, we want to solve the problem of finding a longest path such that the sum of the weights of the edges in the path is non-negative. We present an algorithm to find a longest non-negative path of a degree 3 tree in Ο(n log n) time, where n is the number of nodes in the tree.

키워드

참고문헌

  1. L. Allison, Longest biased intervals and longest non-negative sum intervals, Bioinformatics, vol. 19(10), pp. 1294-1295, 2003 https://doi.org/10.1093/bioinformatics/btg135
  2. A.J. Goldman, Optimal center location in simple networks, Transportation Science, vol. 5, pp. 212-221, 1971
  3. O. Kariv, S.L. Hakimi, An algorithmic approach to network location problem. I: The p-centers, SIAM Journal on Applied Mathematics, vol. 37, pp. 513-538, 1979 https://doi.org/10.1137/0137040
  4. D.E. Knuth, The Art of Programming, Vol. 1. Fundamental Algorithms, 2nd Edition, Addison-Wesley, 1973
  5. L. Wang and Y. Xu, SEGID: Identifying interesting segments in (multiple) sequence alignments, Bioinformatics, vol. 19(2), pp. 297-298, 2003 https://doi.org/10.1093/bioinformatics/19.2.297
  6. B.Y. Wu, K.-M. Chao, and C.Y. Tang, An efficient algorithm for the length-constrained heaviest path problem on a tree, Information Processing Letters, vol. 69, pp. 63-67, 1999 https://doi.org/10.1016/S0020-0190(98)00194-X