A Collaborative Recommendation Method based on Fuzzy Associative Memory

퍼지연상기억장치에 기반한 협력 추천 방법

  • Published : 2004.08.01

Abstract

At recent, people can easily access to information by Internet to be rapidly evolving. And also, the amount is rapidly increasing. So the techniques, to automatically extract the required information are very important to reduce the time and the effort for retrieving information. In this paper, we describe a collaborative filtering system for automatically recommending high-quality information to users with similar interests on arbitrarily narrow information domains. It asks a user to rate a gauge set of items. It then evaluates the user's rates and suggests a recommendation set of items. We interpret the process of evaluation as an inference mechanism that maps a gauge set to a recommendation set. We accomplish the mapping with FAM (Fuzzy Associative Memory). We implemented the suggested system in a Web server and tested its performance in the domain of retrieval of technical papers, especially in the field of information technologies. The experimental results show that it may provide reliable recommendations.

최근 인터넷의 발전으로 정보의 접근이 용이할 뿐 아니라 그 양 또한 기하급수적으로 증가하고 있다. 정보의 홍수 속에서 원하는 정보만을 자동으로 추출할 수 있는 기술은 정보검색에 소요되는 시간과 노력을 절약할 수 있는 매우 중요한 연구이다. 본 논문에서는 관심 범위가 유사한 사용자에게 양질의 정보를 자동으로 추천하기 위하여 협력적 여과방법에 관하여 제안한다. 제안하는 방법의 기본적인 배경은 사용자는 선택항목의 선호도를 입력하고, 여과 장치는 이 선호도에 근거하여 추천집합을 자동으로 생성하는 것이다. 선호도로부터 추천집합을 추론하기 위하여 본 논문에서 퍼지 연상기억장치에 기반한 방법을 제안한다. 제안된 방법은 웹 서버상에서 기술문서 특히, 정보기술문서를 검색하는 분야에 대하여 구현하였으며 그 결과를 보인다.

Keywords

References

  1. Raymond J. Mooney, Loriene Roy, 'Content-based Book Recommending Using Learning for test categorization,' Proceedings of the 5th ACM conference on Digital Libraies, San Antonio, TX, pp.195-204, June, 2000
  2. Weiyang Lin, Sergio A. Alvarez, Carolina Ruiz, 'Collaborative Recommendation via Adaptive Association Rule Mining,' WEBKDD 2000(Workshop on Web Mining for E-commerce - Challenges and opportunities), Boston, MA, August, 2000
  3. Nathaniel Good, J.Ben Schafer, Joseph A. Konstan, Al Borchers, Badrul Sarwar, Jon Herlocker and John Riedl, 'Collaborative Filtering with Personal Agents for Better Recommendation,' Proceedings of the 1999 conference of the American Association of Artificial Intelligence(AAAI-99), July, 1999
  4. D.M. Pennock and E. Horvitz, 'Collaborative filtering by personality diagnosis : A hybrid memory-and model-based approach,' In IJCAI Workshop on Machine Learning for Information Filtering, International Joint Conference on Artificial Intelligence, Stockholm, Sweden, August, 1999
  5. P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom and J. Ridl. 'Grouplens: An open architecture for collaborative filtering of netnews,' In Proceedings of the ACM Conference on Computer Supported Cooperative Work, 1994 https://doi.org/10.1145/192844.192905
  6. Ken Goldberg and Theresa Roeder and Dhruv Gupta and Chris Perkins, 'Eigentaste: A constant time Collaborative Filtering Algorithm,' University of California, Berkeley, Electronics Research Laboratory Technical Report M00/41, 2000
  7. Dae-Sik Jang, Hyung-Il Choi, 'Fuzzy Inference system based on fuzzy associative memory,' Journal of Intelligent and fuzzy systems, Vol.5, pp.271-284, 1997
  8. Kosko B, Neural Networks and Fuzzy Systems, Prentice-Hall International, 1994
  9. Hideyuki T, Isao H, 'NN-Driven fuzzy reasoning,' International Journal of Approximate Reasoning,' International Journal of Approximate Reasoning, pp. 191-212, 1991
  10. Freeman JA, Skapura DM, Neural Networks: Algorithms, Applications and Programming Techniques, Addison Wesley Publishing Company, 1991
  11. Zimmermann HJ, Fuzzy Set Theory and Its Applications, KALA, 1987
  12. Jonathan Herlocker, Joseph Konstan, Al Borchers, John Riedl, 'An algorithmic framework for performing collaborative filtering,' In Proceedings of the SIGIR, ACM, August, 1999