DOI QR코드

DOI QR Code

Fabrication of Continuously Porous Alumina Bodies by Multi-Extrusion Process and their In-vitro and In-vivo Study for Biocompatibility

다중압출공정을 이용한 알루미나 연속다공질체 제조 및 그의 생체친화성 평가를 위한 In-vitro, In-vivo 실험

  • 강인철 (공주대학교 나노소재응용공학부) ;
  • 조순희 (순천향대학교 의과대학 미생물학교) ;
  • 송호연 (순천향대학교 의과대학 미생물학교) ;
  • 이병택 (공주대학교 나노소재응용공학부)
  • Published : 2004.07.01

Abstract

To fabricate the continuously porous alumina bodies by multi-extrusion process, carbon powder and ethylene vinyl acetate were used as a pore forming agent and a binder, respectively. As the change of extrusion pass number, reduction ratio as well as the volume fraction of core and tube, the porous alumina bodies having various kind of pore size and porosity could be obtained. The porous bodies showed continuous pore shape, high specific surface as well as high bending strength, which were compared with those of commercial alumina bodies. In-vitro study was carried out using MG-63 osteoblast cells to investigate of their biocompatibility. As a result, the cells grew well on top and bottom as well as inside surface of pore. From the result of in-vivo study of 3-dimensional porous alumina bodies using rats, it was confirmed that any inflammatory response was not found in the subcutaneous tissue around porous body. Also the porous bodies removed from the rats were fully covered with well-developed fibrous tissues and showed the formation of new capillary blood vessels.

다중 압출 공정을 이용하여 알루미나 연속다공질체를 제조하기 위해 기공형성제로서 탄소 분말을 사용하였으며 세라믹 분말의 성형을 용이하게 하기 위하여 에틸렌 비닐 아세테이트 고분자를 바인더로 사용하였다. 압출 횟수, 압출비 및 재료의 부피비를 제어함으로써 균일한 기공의 크기와 기공률을 용이하게 제어하였다. 제조된 소결체는 연속기공을 가질 뿐아니라 우수한 비표면적을 가졌으며, 기존의 공정에 의해 제조된 알루미나 다공질 재료보다 우수한 곡강도 값을 보였다. 생체 친화성 평가를 위해 인간의 뼈모세포인 MG-63 세포를 이용해 In-vitro 실험을 실시한 결과 기공의 아랫면, 윗면, 내부 및 외부에 세포가 잘 생착하여 네트워크 형태로 치밀하게 잘 성장하였다. 또한 이 재료를 이용하여 3차원 다공질체로 제조한 후 생체적합성을 평가하기 위해 쥐의 피하조직에 이식한 결과 어떠한 염증 소견이나 생체 거부반응이 없었으며 섬유조직으로 잘 둘러 쌓인 다공질체 주위로 새로운 모세혈관이 활발히 생성되었다.

Keywords

References

  1. Biomaterials v.24 Fabrication of $HAp-ZrO_2(3Y)$ Nano-composite by SPS W. Li;L. GaO https://doi.org/10.1016/S0142-9612(02)00428-3
  2. Forum v.31 The Bioceramics Orbital Impalsnt: A New Generation of Orbital Implants D. R. Jordan
  3. Biomaterials v.17 Wear Characteristics of Sliding Pairs of $ZrO_2(Y-TZP)$ for Hip Endoprostheses G. Willmann;H. J. Fruh;H. G. Pfaff https://doi.org/10.1016/0142-9612(96)00042-7
  4. J. Mate. Sci.: Mater. in Med. v.10 Characteristic of Porous Hydroxyapatite K. A. Hing;S. M. Best;W. B. Bonfield https://doi.org/10.1023/A:1008929305897
  5. J. Am. Ceram. Soc. v.81 Bioceramics L. L. Hench https://doi.org/10.1111/j.1151-2916.1998.tb02540.x
  6. J. Biomed. Mate. Res. Symp. v.6 Tissue Ingrowth of Repamineform Implants R. T. Chiroff;E. W. White;J. N. Webber;D. Roy
  7. Thin Solid Films v.297 V. Biasini;M. Parasporo;A. Bellosi
  8. Ceram. Int. v.27 Fabrication of Graded Porous Ceramics Using $Al_2O_3$-Carbon Powder Mixture K. Maca;P. Dobsak;A. R. Boccaccini https://doi.org/10.1016/S0272-8842(01)00004-9
  9. Mater. Lett. v.48 Fabrication of $Al_2O_3$ by Microwave Sintering and Its Properties S. T. Oh;K. I. Tajima;M. Ando;T. Ohji https://doi.org/10.1016/S0167-577X(00)00306-2
  10. Mater. Res. Bull. v.171 Porous ${\alpha}-Al_2O_3$ Ceramics Prepared by Gelcating H. T. Wang;X. Q. Liu;G. Y. Meng
  11. Inorganic Membranes: Synthesis, Characteristics and Applications Synthesis of Inorganic Membranes A. J. Burggraaf;K. Keizer;R. R. Rhave(ed.)
  12. J. Mater. Sci. v.35 Texture Development in $Si_3N_4$/BN Fibrous Monolithic Ceramics S. Y. Lienard;D. Kovar;R. J. Moon;K. J. Bowman;J. W. Halloran https://doi.org/10.1023/A:1004880901978
  13. Kor. J. Mater. Res. v.13 Microstructure Control of Fibrous Monolithic $Al_2O_3/ZrO_2$ Composites G. H. Kim;T. S. Kim;B. T. Lee https://doi.org/10.3740/MRSK.2003.13.4.213
  14. J. Eur. Ceram. Soc. v.20 Evolution of Defect Size and Strength of Porous $Al_2O_3$ During Sintering B. D. Flinn;R. K. Bordia;A. Zimmermann;J. Rodel https://doi.org/10.1016/S0955-2219(00)00133-3
  15. Orthopedic Clinics North Am. v.18 Biological Principles of Bone Introduction A. H. Reddi;S. Wientrob;N. Muthukumaran
  16. Frontiers in Tissue Engineering Tissue Engineered Construct Design Principles G. P. Reece;C. W. Patrick, Jr.;Patrick Jr. CW(ed.);Mikos AG(ed.);Mcintire LV(ed.)
  17. Biomaterial v.14 Laminated Three-Dimensional Biodegradable Foams for Use in Tissue Engineering A. G. Mikos;G. Sarakinos;S. M. Leite;J. P. Vacanti;R. Langer https://doi.org/10.1016/0142-9612(93)90049-8
  18. Injury Int. J. Care Injured 2000 v.S-D31 Inert Bioceramics $(Al_2O_3-ZrO_2)$ for Medical Application A. Marti
  19. An Introduction to Bioceramics The Use of Alumina and Zirconia in Surgical Implant S. F. Hulbert;L. L. Hench(ed.);J. Wilson(ed.)
  20. An Introduction to Bioceramics Hydroxyapatite Coating W. R. Lacefield;L. L. Hench(ed.);J. Wilson(ed.)
  21. Biomaterials v.20 Glass-Reinforced Hydroxyapatite Composites : Fracture Toughness and Hardness Dependence on Microstructural Characteristics M. A. Lopes;F. J. Monterio;J. D. Snatos https://doi.org/10.1016/S0142-9612(99)00112-X
  22. Biomaterials v.21 Glass Reinforced Hydroxyapatite for Hard Tissue Surgery-Part 1 : Mechanical Properties G. Georgiou;J. C. Knowles
  23. Biomaterials v.25 Sintered Hydroxyapatites Part II : Mechanical Properties of Solid Solutions Determined by Micro Indentation K. A. Gross;L. M. Rodrguez-Lorenzo https://doi.org/10.1016/S0142-9612(03)00636-7