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Multiscale Regularization Method for Image Restoration
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ABSTRACT

In this paper we provide a new image restoration method based on the multiscale regularization in the redundant
wavelet transform domain. The proposed method uses the redundant wavelet transform to decompose the
single-scale image restoration problem to multiscale ones and applies scale dependent regularization to the
decomposed restoration problems. The proposed method recovers sharp edges by applying rather less regularization
to wavelet related restorations, while suppressing the resulting noise magnification by the wavelet shrinkage
algorithm. The improved performance of the proposed method over more traditional Wiener filtering is shown

through numerical experiments.
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I. Introduction consider additive white noise 2z as noise model. In

most cases, because of the blurring effect by the point

Mathematically, image restoration problem can be spread function P, the resulting image restoration
written as problem is ill-posed in a sense that small perturbations
=p*f+z (1) in observed images can result in severe artifacts in

restored images. Such instability is often overcome by
the use of a regularization method, which is commonly

where p*f is the two dimensional convolution of p

and f y is an observed image, and p is the point ) ) ] .. .
- . ) done by imposing smoothing restriction on the image
spread function that represents the imaging system

characteristic causing the blurring. In this paper, we to be restored; the regularized image f for the
«AAWGN AFE S LR y )
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X A7E 200245 AANNE HeATZAAu e mzo where S is a smoothing transform. The parameter A
o3 FHAHAL. acts as a balancing parameter; if A is large, then

restoration problem is defined as the minimizer of
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1S 2 small, thus the

regularized image tends to be smoother, while when A

necessarily must be

is small, then one can achieve a better-fitted but
rough image.

While the restored images by regularization are likely
to be less sensitive to noise, standard regularization
methods that confine the restored image with a single
overall restriction tends to lose edge information [11. In
order problem, many spatially
adaptive regularization methods have recently been
developed with the purpose to provide simultaneously
good noise removal in the smooth area and less
smoothing in the edge area. Among those methods,
Geman and Yang (2] used the half quadratic
regularization method that addresses the nonlinear
optimization problem. In Rudin et. al. [3] the

regularization term is set to be |[¢l] gy, the total

to overcome this

variation. In their approach, formation of edges is
encouraged to make total variation of the restored
image small. As a result the restored images look
sharper than those obtained by conventional methods

such as Wiener filtering, especially when the original

image 1s piecewise constant.

There has been a significant trend in recent research
regarding the use of the wavelet transform to the
image restoration problem. The increased interest in
this field is mainly due to the wavelet-based
multiscale structure. The wavelet shrinkage method by
Donocho and Johnstone [4], which shrinks the wavelet
coefficients of noisy observed image towards zero, has
been used to the various Gaussian noise removal
problems [5], [6], etc. Several wavelet approaches have
also been successfully applied to the tomographic
reconstruction problems [7], [8], [9], [10], where the
observed data, which are called projections, are noisy
Radon transform of the image.

As mentioned earlier, the inversion process required in
the image restoration is highly unstable, and various
methods have been used to overcome resulting
difficulties. The well-known Wiener filtering applies
some filtering to the observed image before the actual
inversion takes place, and the form of filters is easily
determined by the decoupling property of the
convolution in the Fourier transform domain. To use
the wavelet transform effectively in the image
restoration, we must have a fast and stabilized
algorithm in computing the wavelet transform of the
restored image from that of the observed image. But
with the traditional wavelet transform, which has the

downsampling in each decomposition step, it is
impossible to have such algorithm.

In this paper we propose a new image restoration
method based on the redundant wavelet transform. The
redundant wavelet transform decouples the convolution
at the expense of the redundancy in its image
representation. Our approach begins with a rather
smooth regularization for the coarsest scaling
coefficients, and then a quite rough scale-dependent
regularization for the remaining redundant wavelet
coefficients. In our method the noise in the restored
redundant wavelet coefficients is suppressed by the
wavelet shrinkage.

Our work is motivated by Zervakis et al. [11], where
the redundant wavelet transform is used to decouple
the convolution as the proposed method of this paper,
but, instead of the regularization method, the Wiener
filtering is separately applied to the redundant wavelet
coefficients at each scalee The Wiener (iltering,
however, whether it is single-scale or multi-scale, is
restricted in use since it requires the original power
spectrum and the adaptive implementation is not easy.
Our method does not have these described difficulties.
We provide experimental results of the proposed
method, the traditional Wiener filtering, and the
multiscale Wiener filtering. The results show that the
proposed method gives smaller errors than Wiener
filtering for most images with various blurring factors
and noise intensities except for some smooth images
that are more contaminated by the noise than by the
blurring. They also show that the restored images by
the proposed method have less ringing effects and
better perceptual image quality than those by Wiener
filtering.

Other wavelet-based image restoration methods can be
found in [12], (13], {14], etc. In Belge et al. [12], they
used the wavelet shrinkage algorithm derived from the
generalized Gaussian modeling on the wavelet
coefficients. In Lee and Paik [13], to have a
space-frequency adaptive image restoration by the
Wiener filtering, the filter is separately determined in
each band, where the band is generated by the
traditional wavelet transform. In Banham et al. [1],
[14], they used the Kalman filtering for the image
restoration by utilizing the statistical similarity between
in inter~scale wavelet coefficients.

This paper is organized as follows. In Section 2 we
briefly explain the redundant wavelet representation of
images. In Section 3 we propose a multiscale image
restoration method. The performances of the proposed
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method is shown in Section 4. Finally, discussion and
conclusion are given in Section 5.

II. Redundant Wavelet Representation

In this section we present necessary concept of the
basic wavelet theory needed for the presentation of
this paper. For more details, see, e.g., [15].

Wavelets are defined by low pass filter (k& n) and
(g,). The

transform and its inverse transform for images can be

high pass filter redundant wavelet

defined by the convolution with the tensor product of
two one dimensional filters: To be specific, an image

= ,,l'nz), let the finest coefficients C° be

n;, N,

f n,.n, Ihe redundant wavelet transform of the image

f is obtained by
dimensional convolutions

Ck+l=(_h®_h)*ck, Dk+1.l=(—h®_—é)*ck
Dk+1'2=(—é®—7t)*ck, Dk“'3=(—g®_g)*ck,

where the convolution with the tensor product #®uv

successively applying the two

is defined by
[( u®v)*f.l jl'jZ= nzn ujl—nlvjz—nzfnl,nz
172

and & =h_, Tgn=g_,,. The two dimensional

inverse redundant wavelet transform reconstructs the

original image ok from
DY, D¥c, -, D*" CM e=1,2,3, by
successively using
CH=—1 [ (h®W*C**' +(h@g)*D !
+(g®m*D* 12+ (g®g)*D**1-7).
The redundant wavelet coefficients

Ck, D*,e=1,2,3 are

successive convolutions of f with tensor products

(R n),(hQg), (g®h), or (&® g). Thus

the redundant wavelet transform can commute with the

generated from the

convolution, i.e.,

CHpxH=p*xC*()) @

and
D (pxfy=pxD** (), @3)
where we have used the notations C k( /) and
D**(H) to denote the K-th redundant scaling

coefficients and the k-th  redundant wavelet

coefficients of f respectively.

III. Multiscale Regularization

Let us consider the minimizer 7 of the following
functional to the image restoration problem (1):

lly— ol 2+ Alloll 2

Then it is not difficult to show that the minimizer

image f is the convolution of the observed image ¥
with

P’ on, )
2
|P7‘1'”2I +A 1 ny,ny

where F is the Fourier transform, P = F(p), and

q=F_1[

1, ,,is the all 1 matrix.

While the regularized restorations are likely to be less
sensitive to noise, the regularization methods based on
the overall restriction on the restored image tends to
result in either the loss of edge information or the
poor noise removal. For instance, the restored images

associated with a large A can have a good noise
removal property, but it often loses the edge
information. On the other hand, the restored images

with a small A are likely to suffer from the poor noise
removal, while they might provide a sharp restoration
of edges.

To overcome the described difficulty, in this paper we
suggest a multiscale restoration method. The proposed
method is based on the regularization and the wavelet
shrinkage techniques on the redundant wavelet
transform domain. By applying the redundant wavelet
transform, we change the single-scale image
restoration problem (1) to

restoration problems

Ch(M=p«C*(H+C*(2) 4)

and

D*(y)=p*D** (H+ D" (2),

for 1<k<k, e=1,2,3.

In the proposed method we apply the regularization
techniques to the restoration problems related to the
redundant coefficients and then use the
wavelet shrinkage algorithm to suppress the noise in

the restored redundant wavelet coefficients. In our
approach, we wish to approximate the true coarsest

the multiscale image

wavelet
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scaling coefficients C *°() rapidly by the regularized
solution in (4) and remove most of noises in the
restored redundant wavelet coefficients by using the
wavelet shrinkage algorithm, while preserving an
important image feature such as edges.

We begin with the restoration problem associated with

. .. ko .
the coarsest scaling coefficients C”°, ie.,

Chm=pro+C* (2.
To solve this, we consider the following regularized
solution

T* = arg min L(IC*G)—pxoll 2+, Jloll 2).

We can easily compute the minimizer of the above
functional by

Th=q,,0C"0)

where

*
N7 )

2 .
lP"]-”zl +)\'k01 n,n,;
Once we compute the coarsest redundant scaling

Ko k“, we

regularized solution

D** = arg min L(ID** (3) = p*oll 2+ A lloll %)
for 1<k<k; and ¢=1,2,3. With a
argument, we have

D5 =g, D" (),

where

Qko,():F_l(

coefficients consider the following

similar

P*

ny,”n3 )

2
IPn,,nzl +}\k,e 1 n,n,

Qk,s::F—.l(

The shrinkage operator S, is defined by

_1x—sign(xu if [ddn
Su(")_[g e i d<n

for 1>(0. We use the wavelet shrinkage algorithm to
suppress the noise in the restored redundant wavelet

coefficients D **. Finally, we compute T* ! from

T*nd S uM('D %) We proceed the above steps

until we get the restored image F= T°
For the restored redundant wavelet coefficients, finding

optimal parameters for A ke and 1 . simultaneously
is very difficult. In this work we only consider the
case where the shrinkage parameters are of the form
Hpe™ n2 - k

and the regularization parameters satisfy

A g0 =A2 o and A, =BN2"

with 0<B{1. Roughly sgeaking, we believe that a
better fitted

regularization parameters

image restoration with a smaller

A,. and then a noise

removal with a larger shrinkage parameter to the finer
redundant wavelet coefficients gives better results.
Before closing this section, we comment on the Wiener
filtering method for the future use. As the restored
image for the image restoration problem (1), the
Wiener filtering provides

Sff *

nL Nt nm, )
’

2¢ff
P”h”zl S”l:"z+szjx-n2

F=g*y g=F K |

where S¥ denotes the power spectrum of the random
field f Here we assume that the average intensities of
true image f as random filed are O to simplify our
presentation. In practice, we estimate S by using ¥.
As mentioned earlier, our method is similar to that of

Zervakis et. al. [11]. They applied the Wiener filtering
to the multiscale image restoration problem (2), (3),

ie.,

Th=g,,#C"®

and

D =g, D* (),

where

Lorpct

Qu0=F X So.8 Poum
. IPn;.nzI ZSCnh(;’)ZC (ﬂ+521,(i)zc (2

and

Y PR 4. i W S—
' P n | 2S5O SRR

for 1<k<k, and £=1,2,3. Again, we use the

observed image ¥ in estimating statistical terms

related to f

IV. Simulations

We conducted image restoration experiments with the
proposed  method(MW), which uses multiscale
regularization and wavelet shrinkage techniques, the
traditional single-scale Wiener filtering(SF), and the
multiscale Wiener filtering(MF) by Zervakis et. al. [11]
to the image that is blurred by the point spread
function
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n% +n’
PO E
Ny, Ny \/—7—7'61/ (5)
and then contaminated by the white noise
Z . 0~ G0, 0%, ©6)

Our main conclusion is that the proposed restoration
method MW provides smaller errors in terms of the
peak signal-to—noise ratio(PSNR)

255 2
PSNR = 10 log 19 Nzlzlllfi,j'"?i,il :

where fl-' ; and 7,-, j are the (7,7) pixels in the
original and restored images, respectively, and the size
of image is N x [N, and gives sharper edges and less

ringing effects than SF and MF do.

Table 1. PSNRs by the proposed method(MW) with

A=0.0,. B=0.6, u=V2log N°¢ and the
wavelet depth £ =23.

a 003 N 004 N 005 N

o 20 | 30 {40 | 20| 30|40 20|30 40

Baboon 20.77) 20.66| 20.54| 20.19| 20.15] 20.08| 19.87| 18.83] 19.80
Butterfly | 26.12] 256.82| 25.52| 23.70} 23.61| 23.46| 21.94| 21.89| 21.81
Cameraman | 25.22] 24.99| 24.72| 23.70] 23.59| 23.44| 22.73| 22.67| 22.62
Woman 25.36| 25.12| 24.83| 24.37| 24.24| 24.06| 23.67| 23.59| 23.50
Lenna 26.39] 26.11] 25.72) 25.00| 24.84| 24.67| 24.02| 23.94| 23.84
Pepper: 27.40] 27.06| 26.601 25.89| 25.74] 25.54| 24.75| 24.66| 24.55
Barbara 27.11] 26.76] 26.31} 26.22| 26.04| 25.78| 25.39] 25.28| 25.13
Couple 30.18| 29.56| 28.81| 28.69| 28.39] 28.01| 27.68] 27.53| 27.25
Girl 31.11| 30.36| 29.51| 29.57| 29.20| 28.69| 28.31| 28.13| 27.88
Bird 32.55| 31.48| 30.35| 30.98| 30.44| 29.72| 20.54| 29.29] 28.97

Table 2. PSNRs by the single scale Wiener
filtering(SF). The boldface is used to indicate the cases

where SF outperforms MW.

a 003 N 004 N 005 N
o 20130 |40 | 20| 30| 40| 20| 30| 40

Baboon 20.43} 20.32] 20.25) 19.98( 19.90| 19.85] 19.71| 19.65| 19.60
Butterfly | 24.93| 24.48| 24.19| 22.86] 22.50| 22.24| 21.37| 21.10| 20.91
Cameraman | 24.33| 24.09| 23.89] 23.14| 22.92| 22.77| 22.35| 22.18| 22.05
Woman 24.80| 24.61| 24.46 23.96| 23.80! 23.67| 23.33| 23.19| 23.07
Lenna 26.54| 25.28| 26.06| 24.35| 24.15] 24.01| 23.57{ 23.38| 23.25
Peppers 26.50] 26.22] 25.99| 25.18| 24.93] 24.72| 24.20; 23.97| 23.80
Barbara 26.60| 26.40} 26.22| 25.71| 25.50| 25.35| 24.92| 24.73| 24.57
Couple: 29.20| 28.87} 28.64| 27.97| 27.68| 27.50| 27.02| 26.80| 26.62
Girl 30.18} 29.78| 29.48| 28.61| 28.31| 28.09} 27.60| 27.35| 27.17
Bird 31.92]31.49(31.12| 30.16] 29.77| 29.49] 28.86| 28.52| 28.33

Table 3. PSNRs by the multiscale Wiener
filtering(MF). The boldface is used to indicate the
cases where MF outperforms MW.

a 003 N 004 N 005 N
o 20|30 |40 | 20| 30| 40|20 301 40

Baboon 20.61| 20.50| 20.43| 20.12| 20.05| 20.00| 19.82| 19.77] 19.72
Butterfly | 25.63) 25.23) 24.99| 23.55| 23.23| 22.97) 21.93| 21.68) 21.47|
Cameraman | 24.76| 24.53| 24.34| 23.52| 23.33| 23.16| 22.66| 22.51| 22.41
Woman 25.10| 24.93] 24.77| 24.26] 24.10| 23.98| 23.60| 23.46| 23.35
Lenna 25.99| 25.74| 25.54| 24.75| 24.55| 24.42| 2391] 23.75| 23.63
Peppers 26.95| 26.71| 26.48| 25.64| 25.41| 25.23| 24.63| 24.40| 24.25
Barbara 26.92) 26.7326.54| 26.05 25.87| 25.73| 25.28| 25.10| 24.95
Couple 29.73| 29.3629.07| 2841 | 28.16| 27.96| 27.43| 27.24| 27.03
Girl 30.76| 30.34|30.04}| 29.20| 28.90| 28.64| 28.05| 27.82| 27.64
Bird 32.56|32.08|31.66| 30.81| 30.43]30.12] 29.46| 29.17| 290.94

We use the piecewise constant biorthogonal wavelet
filters with tap length 10. We modified the wavelets at

the boundary in a way equivalent to making the image

depth kg of

periodic. We set the wavelet

decomposition to be 3.

Fig. 1. Original image(Cameraman)

Fig. 2. Degraded by Gaussian blurring( ¢=0.04N)
and white noise( g = 3.0)
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We used 10 standard 256-grey with N = 256 and

several blurring factors ¢ = (.03N ,0.04N ,(0.05N
in (5) and noise intensities ¢=2.0,3.0,4.0 in (6.

We  chose "Baboon’, "Butterfly’, 'Cameraman’,
"Woman’, 'Lenna’, 'Peppers’, ‘Barbara’, 'Couple’, Girl’,
'Bird’ in order from a large collection of test images
to have varying high frequency energies(To measure
this, we calculate the energy contained in the standard
wavelet transform domain) in selected images. Here
‘Baboon’ has the largest high frequency energy and
‘Bird" has the smallest one.

Table 1, 2, and 3 show the results of MW, SF, and
MF experiments, respectively, with PSNRs of the

restored images. For MW, we used A=0(.01,
,3_—_0_6, and #:\/ 210gN20‘- The parameters A

Fig. 3. Restored image by MW with and [ are selected as the experimental parameters
A=0.01, 8=0.6, and ,=V210gN2g from the test with 'Cameraman’ image and then used

for all other images. The experiments with other

images indicates that it is better to use a larger A for
smoother or noisier images. We certainly believe that
there is strong relation between the smoothness of
images and the optimal parameters, but we shall not
address this issue in this paper.

Fig. 4. Restored image by SF

Fig. 6. Original image(Bird)

14
i

Fig. 5. Restored image by MF

Fig. 7. Degraded by Gaussian

blurring( ¢=0.04N) and white noise( 5= 3.0)
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Fig. 8. Restored image by MW with
A=0.01, =0.6, and x=v210gNZs

Fig. 9. Restored image by SF

Fig. 10. Restored image by MF

In Table 2 and 3 we used the boldface to indicate the
case where SF or MF outperform MW. As we can see
from Table 1, 2, and 3, MW gives smaller errors in

terms of PSNR than SF and MF for most images with
most cases except for some smooth images that are
more contaminated by the noise than by the blurring.
Figure 1 and 6 show original image 'Cameraman’ and
'Bird’, and Figure 2 and 7 show noisy and blurred

version of Figure 1 and Figure 6, respectively, with

a=0.04 and ¢=3.(Q. Figure 3, 4, and 5 show the
restored images by MW, SF, MF, respectively, from
the noisy blurred image in Figure 2. Comparing the
restored images by SF and MF with MW, sharper
edges are obvious in MW. The textual pattern of the
ground is a greater extent in Figure 4 and 5 than in
Figure 3. This is due to the fact that SF and MF
remove too much of high frequency information in
those region while removing noises. Moreover, in MW
some ringing effects around strong edges are greatly
suppressed, for example, regions around legs of the
tripod in 'Cameraman’. Figure 8, 9, and 10 show the
restored images by MW, SF, MF, respectively, from
the noisy blurred image in Figure 7.

As we can see from Figure 6, the image 'Bird’ has
very smooth background, and this is the region where
MW has certain difficulty in removing noises. It is,
however, obvious that MW provides sharper edges and
less ringing effects than SF and MF for smooth
images. With these rather subjective evidences and
objective results in Table 1, 2, and 3, we conclude that
the restored images by MW have less ringing effects
and better perceptual image quality than those by SF
and MF.

V. Conclusions

We wused the PSNR measure to compare the
performance of the proposed method(MW) with the
Wiener filtering(SF) and the multiscale
filtering(MF)[11]. Through these
studies, we conclude that MW gives smaller errors

traditional
Wiener simulation
than SF and MF for most images with most cases

except for some smooth images that are more
contaminated by the noise than by the blurring. We
also conclude that the restored images by MW have
less ringing effects and better perceptual image quality
than those by SF and MF.

The improved performance of MW comes at expense
of longer restoration time. The proposed method MW
requires approximately same améunt of computations

as MF does, but, as compared with SF, it needs
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approximately 3% +1 times of that needed for SF
plus O(N 2log N) computations for images with

Nx N pixels. Due to rapid progress in computing
environment, it is believed that the computing time in
MW and MF would be no longer a big problem.
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