초록
머리가 포함된 얼굴 윤곽선은 5차원의 매개변수들을 가지는 타원 형태와 유사하다. 이 특성은 타원 검출 알고리듬을 얼굴검출 방법에 이용할 수 있도록 한다. 그렇지만 허프 변환으로 5 차원의 매개변수 공간을 구축하기에는 매우 어렵다. 본 논문에서는 선택적 주의집중을 가지는 허프 변환 방법으로 주어진 영상에서 대칭 윤곽선을 가지는 얼굴을 검출하는 방법을 제안한다. 이 방법은 고정된 얼굴의 장단 비율, 그래디언트 정보, 주사선 기반 선택적 방향 분해를 이용하여, 5 차원의 매개변수 공간을 타원의 중심과 특정한 회전 방향을 추정하는 2 차원의 매개변수 공간과 단축의 길이를 추정하는 1 차원의 매개변수 공간으로 분해가 가능하도록 한다. 부가적으로 이 방법에 그래디언트와 지리적인 정보를 결합하는 두 점 선택 제약 조건을 적용하여 복잡한 배경을 가지는 영상에서 허프 변환의 속도를 증대시킨다. 제안하는 허프 변환으로 추출된 후보 얼굴 영역들 가운데에서 얼굴이 아닌 타원 영역들을 다층 퍼셉트론으로 기각시켜 얼굴을 최종적으로 검출한다. 본 논문에서 제안하는 얼굴 검출 방법을 얼굴이 포함된 다양한 영상들에 적용하여 실험한 결과로부터, 제안하는 방법은 처리 속도와 효율성에서 우수함을 확인하였다.
A face boundary can be approximated by an ellipse with five-dimensional parameters. This property allows an ellipse detection algorithm to be adapted to detecting faces. However, the construction of a huge five-dimensional parameter space for a Hough transform is quite unpractical. Accordingly, we Propose a selectively attentional Hough transform method for detecting faces from a symmetric contour in an image. The idea is based on the use of a constant aspect ratio for a face, gradient information, and scan-line-based orientation decomposition, thereby allowing a 5-dimensional problem to be decomposed into a two-dimensional one to compute a center with a specific orientation and an one-dimensional one to estimate a short axis. In addition, a two-point selection constraint using geometric and gradient information is also employed to increase the speed and cope with a cluttered background. After detecting candidate face regions using the proposed Hough transform, a multi-layer perceptron verifier is adopted to reject false positives. The proposed method was found to be relatively fast and promising.