Performance Prediction of the MHT Algorithm for Tracking under Cluttered Environments

클러터 환경에서 표적 추적을 위한 다중 가설 추적 알고리듬의 성능 예측

  • Published : 2004.07.01

Abstract

In this paper, we developed a method for predicting the tracking performance of the multiple hypothesis tracking (MHT) algorithm. The MHT algerithm is known to be a measurement-oriented optimal Bayesian approach and is superior to any other tracking filters because it takes into account the events that the measurements can be originated from new targets and false alarms as well as interesting targets. In the MHT algorithm, a number of candidate hypotheses are generated and evaluated later as more data are received. The probability of each candidate hypotheses is approximately evaluated by using the hybrid conditional average approach (HYCA). We performed numerical experiments to show the validity of our performance prediction.

본 논문에서는 표적 추적에 널리 사용되는 다중 가설 추적(MHT: Multiple Hypothesis Tracking) 알고리듬의 추적 성능을 예측할 수 있는 방법을 제시한다. MHT 알고리듬은 최적의 베이시안 필터로서, 측정된 데이터를 기초로 가능한 가설들을 구성하고, 각 가설들의 확률을 구하게 된다. 모든 측정치들은 관심 있는 실제 표적에서 기인할 수 있을 뿐만 아니라, 새로운 표적이거나 표적이외의 거짓에서 발생할 수도 있다는 사건을 고려하고 있기 때문에 다른 여러 추적 필터에 비해 MHT 알고리듬은 우수한 추적성능을 가지고 있다고 알려져 있다. 측정 데이터와 무관하게 추적기의 성능을 표현하기 위해서 HYCA(Hybrid Conditional Average)방법을 이용하여 MHT 알고리듬에서 발생하는 모든 가설 확률의 기대 값을 구한 후, 이를 이용하여 성능을 예측하는 방법을 제시한다. 수치실험을 통하여 이 논문에서 제시한 성능 예측이 타당함을 보인다.

Keywords

References

  1. I. J. Cox, and S. L. Hingorani, 'An efficient implementation of Reid's multiple hypothesis tracking algorithm and its evaluation for the purpose of visual tracking,' IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 18, no. 2, pp. 138-150, February 1996 https://doi.org/10.1109/34.481539
  2. S. S. Blackman (Ed.), Multi-Target Tracking with Radar Application, Norwood, MA: Artech House, 1986
  3. Y. Bar-Shalom and T. E. Fortmann, Tracking and Data Association, Orlando, FL: Academic Press, 1988
  4. Mori, S., Chong, C. Y, Tse, R., and Wishner, R. P, 'Tracking and classifying multiple targets without a prior identification,' IEEE Trans. on Automatic Control, vol. AC-31, no. 5, pp. 401-409, May, 1986
  5. D. B. Reid, 'An algorithm for tracking multiple Targets,' IEEE Trans. on Automatic Control, vol. AC-24, no. 6 pp. 843-854, Dec., 1979
  6. K. C Chang, S. Mori and C. Y Chong, 'Evaluating a multiple-hypothesis multitarget tracking Algorithm,' IEEE Trans. on Aerospace and Electronic Systems, vol. AES-30, no. 2, pp. 578-590, April 1994 https://doi.org/10.1109/7.272279
  7. Daum, F. E, 'Bounds on performance for multiple target tracking,' IEEE Trans. on Automatic Control, vol. AC-35, no. 4, pp. 443-446, April, 1990 https://doi.org/10.1109/9.52299
  8. T. E. Fortmann, Y. Bar-Shalom, M. Scheffe, and S. Gelfand, 'Detection thresholds for tracking in clutter-A connection between estimation and signal processing,' IEEE Trans. on Automatic Control, vol. AC-30, pp. 221-229, March 1985 https://doi.org/10.1109/TAC.1985.1103935
  9. X. Rong Li and Y. Bar-Shalom, 'Stability evaluation and tracking life of the PDAF for tracking in clutter,' IEEE Trans. on Aerospace and Electronic Systems, vol. 36, no. 5, pp. 588-601, May 1991
  10. X. Rong Li and Y. Bar-Shalom, 'Performance prediction of the interacting multiple model algorithm,' IEEE Trans. on Aerospace and Electronic Systems, vol. 29, no. 3, pp. 755-770, July 1993 https://doi.org/10.1109/7.220926
  11. X. Rong Li and Y. Bar-Shalom, 'Tracking in clutter with Nearest neighbor filters: analysis and performance,' IEEE Trans. on Aerospace and Electronic Systems, vol. 32, no. 3, pp. 995-1010, July 1996 https://doi.org/10.1109/7.532259
  12. Y. H. Jung and S. M. Hong, 'Modelling and parameter optimization of agile beam radar tracking,' IEEE Trans. on Aerospace and Electronic Systems, vol AES-39, no. 1, pp. 13-33, January 2003 https://doi.org/10.1109/TAES.2003.1188891