DOI QR코드

DOI QR Code

Application of a Promoter Isolated from Chlorella Virus in Chlorella Transformation System

  • Park, Hyoun-Hyang (Department of Microbiology, Pukyong National University) ;
  • Park, Tae-Jin (Department of Microbiology, Pukyong National University)
  • Published : 2004.06.01

Abstract

Chlorella is a eukaryotic microalgae which shares metabolic pathways with higher plants. These charac-teristics make chlorella a potential candidate for eukaryotic overexpression systems. Recently, a foreign flounder growth hormone gene was stably introduced and expressed in transformed Chlorella ellipsoidea by using a modified plant transformation vector that contains cauliflower mosaic virus (CaMV) 35S pro-moter and the phleomycin resistant Sh ble gene as a selection marker. In this study, this same vector was modified by incorporating a promoter and a 3' UTR region of the 33kDa peptide gene from a chlorella virus that was isolated in our laboratory. The 33kDa gene promoter was used to replace the 35S promoter and the 3' UTR was introduced to separate the target gene and downstream Sh ble gene. Three different chlorella transformation vectors containing human erythropoietin (EPO) gene were constructed. The mp335EPO vector consists of a promoter from the 33kDa peptide gene, whereas the mp3353EPO vector contains the same promoter from the 33kDa peptide gene and its 3' UTR. The mp35S33pEPO vector contains the 35S promoter and the 3' UTR from the 33 kDa peptide gene. There was no significant difference in the expression levels of EPO protein in chlorella cells transformed with either of three of the transformation vectors. These data indicate that the promoters from the chlorella virus are comparable to the most common CaMV 35S promoter. Furthermore, these data suggest that other promoters from this virus can be used in future construction of chlorella transformation system for higher expression of target proteins.

Keywords

References

  1. Amitava, M., Dan, W. H. and Nancy, J. R. 1994. A Chlorella virus gene promoter functions as a strong promoter both in plants and bacteria Biochem. Bioph. Res. Comm. 204:187-194 https://doi.org/10.1006/bbrc.1994.2443
  2. Anne, M. S., Michael, G., Kenneth, K., Marcia, Z., Jhon, B., Daniel, G. and Russel, H. M. 1990. Transcription and sequence studies of a 4.3-kbp fragment from ads-DNA eukaryotic algal virus. Virology 176:515-523 https://doi.org/10.1016/0042-6822(90)90021-I
  3. Cho, H. H., Park, H. H., Kim, J. O. and Choi, T. J. 2002. Isolation and Characterization of Chiarella Viruses from Freshwater Sources in Korea. Mol. Cells 14:168-176
  4. Dawson, H. N., Burlingame, R. and Cannons, A. C. 1997. Stable transformation of Chlorella: Rescue of nitrate reductase-deficient mutants with the nitrate reductase gene. Curr. Microbiol. 35:356-362 https://doi.org/10.1007/s002849900268
  5. Dunabay, T. G. 1993. Transformation of Chlamydomonas reinhardtU with silicon carbide whiskers. Biotechniques 15:452-460
  6. Eric, D. and Caroline, E. 1991. Influence of storage conditions on the activity of recombinant hirudin. Thromb Res. 61:87-89
  7. Gmunder, H. and Kohli, J. 1989. Cauliflower mosaic virus promoters direct efficient expression of a bacterial G418 resistance gene in Schizosaccharomyces pombe. Mol. Gen. Genet. 220:95-101
  8. Graves, M. V. 1992. Characterization of the gene encoding the most abundant in vitro translation product from virus-infected chlorella-like algae. Gene 149-155
  9. Graves, M. V. and Meints, R. H. 1992. Characterization of the major capsid protein and cloning of its gene from algal virus PBCV-1. Virology 188:198-207 https://doi.org/10.1016/0042-6822(92)90750-J
  10. Graves, M. V., Bemadt, C. T., Ronald, C. and Van Etten, J. L. 2001. Molecular and genetic evidence for a virus-encoded glycosyltransferase involded in protein glycosylation. Virology 285:332-345 https://doi.org/10.1006/viro.2001.0937
  11. Graves, M. V., Burbank, D. E., Roth, R., Heuser, J., DeAngelis, P. L. and Van Etten, J. L. 1999. Hyaluronan synthesis in virus PBCV-1-infected chIarella-like green algae. Virology 257: 15-23 https://doi.org/10.1006/viro.1999.9628
  12. Gerald, F. K., Yu, L., Zhiqang, L., Masakazu, F., Daniel, L. R. and Van Etten, J. L. 1996. Analysis of 76kb of the chlorella virus PBCV-l 330-kb genome: Map positions 182 to 258. Virology 223:303-317 https://doi.org/10.1006/viro.1996.0482
  13. Hasnain, S. E., Manavathu, E. K. and Leung, W. C. 1985. DNAmediated of Chlamydomonas reinhardi cells: use of aminoglycoside 3'-phosphotransferase as a selectable marker. Mol. Cell. BioI. 5:3647-3650 https://doi.org/10.1128/MCB.5.12.3647
  14. Jarvis, E. E. and Brown, L. M. 1991. Transient expression of firefly luciferase in protoplasts of the green alga Chlorella ellipsoidea. Curr. Genet. 19:317-321 https://doi.org/10.1007/BF00355062
  15. Kim, D. H., Kim Y. T., Cho, J. J. Bae, J. H., Hur, S. B. Hwang, I. and Choi, T. J. 2002. Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea. Mar. Biotechnol. 4:63-73 https://doi.org/10.1007/s1012601-0070-x
  16. Lavrukhin, O. V., Fortune, J. M. Wood, T. G., Burbank, D. E., Van Etten, J. L., Osheroff, N. and Lloyd, R. S. 2000. Topoisomerase II from chlorella virus PBCV-I. Characterization of the smallest known type II topoisomerase. J. BioI. Chem. 275:6915-6921 https://doi.org/10.1074/jbc.275.10.6915
  17. Pobjecky, N., Rosenberg, G. H., Dinter-Gottlieb, G. and Kaufer, N. F. 1990. Expression of the beta-glucuronidase gene under the control of the CaMV 35s promoter in Schizosaccharomyces pombe. Mol. Gen. Genet. 220:314-316
  18. Schuster, A. M., Graves, M., Korth, K., Ziegelbein, M., Brumbaugh, J., Grone, D. and Meints, R. H. 1990. Transcription and sequence studies of a 4.3-kbp fragment from a ds-DNA eukaryotic algal virus. Virology 176:515-523 https://doi.org/10.1016/0042-6822(90)90021-I
  19. Schuster, A. M., Girton, L., Burbank, D. E. and Van Etten, J. L. 1986a. Infection of a Chiarella-like alga with the virus PBCV-I: transcriptional studies. Virology 148: 181-189 https://doi.org/10.1016/0042-6822(86)90413-7
  20. Schuren, F. H. and Wessels, J. G. 1994. Highly-efficient transformation of the homobasidiomycete Schizophyllum commune to phleomycin resistance. Curr. Genet. 26: 179-183 https://doi.org/10.1007/BF00313808
  21. Sorokin, C. and Krauss, R. W. 1958. The effect of light intensity on the growth rate of green algae. Plant Physiol. 33: 109-113 https://doi.org/10.1104/pp.33.2.109
  22. Sun, L., Adams, B., Gumon, J. R., Ye, Y. and Van Etten, J. L. 1999. Characterization of two chitinase genes and one chitosanase gene encoded by chlorella virus PBCV-1. Virology 263: 376-387 https://doi.org/10.1006/viro.1999.9958
  23. Van Etten, J. L., Schuster, A. M. and Meints, R. H. 1988. Viruses of eukaryotic Chlorella-like algae. In 'Viruses of Fungi and Simple Eukaryotes' (Koltin, Y. and Leibowits, M. J. Eds.), Dekker, New York
  24. Xia, Y. and J. L. Van Etten. 1986. DNA methyltransferase induced by PBCV-1 virus infection of a Chlorella-like green alga. Mol. Cell. BioI. 6:1440-1445 https://doi.org/10.1128/MCB.6.5.1440
  25. Ying, C., Yiqin, W., Yongru, S., Liming, Z. and Wenbin, L. 2001. Highly efficient expression of rabbit neutrophil peptide-I gene in Chlorella ellipsoidea cells. Curr Genet. 39:65-370
  26. Yuen, L. and Moss, B. 1987. Oligonucleotide sequence signaling transcriptional termination of vaccinia virus early genes. Proc. Natl. Acad. Sci. USA 84:6417-6421 https://doi.org/10.1073/pnas.84.18.6417
  27. Zang, B., Tao, T., Wilson, G. G. and Blumenthal, R. M. 1998. The MAluI DNA-(cytosine C5)-methyltransferase has an unusually large, partially dispensable, variable region. Nucleic Acids Res. 21 :905-911 https://doi.org/10.1093/nar/21.4.905