Spatial Information Research
- Volume 12 Issue 1
- /
- Pages.111-125
- /
- 2004
- /
- 2366-3286(pISSN)
- /
- 2366-3294(eISSN)
A study on classification accuracy improvements using orthogonal summation of posterior probabilities
사후확률 결합에 의한 분류정확도 향상에 관한 연구
Abstract
Improvements of classification accuracy are main issues in satellite image classification. Considering the facts that multiple images in the same area are available, there are needs on researches aiming improvements of classification accuracy using multiple data sets. In this study, orthogonal summation method of Dempster-Shafer theory (theory of evidence) is proposed as a multiple imagery classification method and posterior probabilities and classification uncertainty are used in calculation process. Accuracies of the proposed method are higher than conventional classification methods, maximum likelihood classification(MLC) of each data and MLC of merged data sets, which can be certified through statistical tests of mean difference.
위성영상 분류에 관한 주요 주제 중 하나는 분류 정확도 향상에 있다. 동일지역에 대한 동일시기의 위성영상을 취득할 수 있는 기회가 많아지는 현실을 감안할 때, 복수의 위성영상 데이터를 이용하여 분류정확도가 향상된 분류결과를 도출하는 것은 의미 있는 일일 것이다. 본 연구 주제는 최대우도법을 사용하여 계산된 데이터의 사후확률 및 분류 불확실도를 Dempster-Shafer의 증거이론에 적용하여 분류정확도를 향상시키고자 하는 것이다. 분석결과 개별적인 데이터 분류나 데이터간 융합에 의한 분류보다 본 연구에서 제안한 방법이 전체정확도와 Kappa 지수 모두 높은 정확도를 나타냈으며, 정확도 차에 대한 검정을 실시하여 본 연구에서 제안한 방법이 다른 방법에 비해 우수함을 통계적으로 증명하였다.
Keywords