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Identification of a Gaussian Fuzzy Classifier

Heesoo Hwang

Abstract: This paper proposes an approach to deriving a fuzzy classifier based on evolutionary
supervised clustering, which identifies the optimal clusters necessary to classify classes. The
clusters are formed by multi-dimensional weighted Euclidean distance, which allows clusters of
varying shapes and sizes. A cluster induces a Gaussian fuzzy antecedent set with unique vari-
ance in each dimension, which reflects the tightness of the cluster. The fuzzy classifier is com-
posed of as many classification rules as classes. The clusters identified for each class constitute
fuzzy sets, which are joined by an “and” connective in the antecedent part of the corresponding
rule. The approach is evaluated using six data sets. The comparative results with different classi-

fiers are given.
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1. INTRODUCTION

Fuzzy logic improves classification and decision
support systems by allowing the use of overlapping
class definitions and improves the interpretability of
the results by providing more insight into the classifier
structure and decision process [9]. Several different
techniques, such as neuro-fuzzy methods [5], genetic
algorithm based rule selection [6], and clustering with
evolutionary optimization [6, 7, 13] have been pro-
duced for the automatic determination of fuzzy classi-
fication rules from data. Most of the last approaches
are devoted to improving the results of the fuzzy c-
means (FCM) algorithm by using genetic algorithms
(GAs) to optimize some parameters of the algorithm.
The use of GAs generates three different groups of
fuzzy clustering algorithms. Prototype-based algo-
rithms encode the fuzzy cluster prototypes and evolve
them by means of GAs guided by any centroid objec-
tive function [12, 16]. Fuzzy partition-based algo-
rithms encode and evolve the fuzzy membership ma-
trix [18]. The second group uses GAs to define the
distance norm of FCM algorithms. The system con-
siders the adaptive distance function and employs
GAs to learn its parameters and obtain an optimal be-
haviour of the FCM algorithm [4]. Finally, the third
group is based on directly solving the clustering prob-
lem without interaction with any FCM algorithm [3].
This group is of our concern. In any group, the quality
of data clustering and the accuracy of classification
are influenced by three parameters: the number of
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clusters for each class, their positions, and their shapes.
Most clustering algorithms require a priori knowledge
of the problem to fix the number and starting positions
of the clusters. Although such knowledge may be as-
sumed for domains whose dimensionality is fairly small
or whose underlying structure is intuitive, it is clearly
much less accessible in a hyper-dimensional system.

To tackle this problem, evolutionary supervised
clustering (ESC) is proposed. ESC produces multi-
dimensional weighted Euclidean distance-based clus-
ters, which can easily be converted to Gaussian fuzzy
sets. For each class, one optimal cluster with its cen-
troid, radius, and weighting factors is searched by dif-
ferential evolution (DE), and then feature vectors con-
tained in the cluster are removed in the feature vector
set. For the remaining feature vectors, this process is
continued until a predefined maximum cluster number
is reached. For each class, the clusters identified by
ECS are converted to Gaussian fuzzy sets, which are
joined by an “and” connective in the antecedent part
of the classification rule. The fuzzy sets that have the
form of unique variance in each dimension improve
classification by allowing the use of overlapping class
definitions. The fuzzy classifier is composed of as
many classification rules as classes. The proposed
approach is applied to six classification problems, and
comparative results with other techniques are given.

2. FUZZY CLASSIFIER STRUCTURE

Let’s consider fuzzy classification rules that each
describe one of n,, classes in the feature vector set.
The antecedent of the fuzzy rule is a fuzzy description
in the dJ-dimensional feature space and the conse-
quent is a crisp class label from the set {1,2,---,npc}
The degree of fulfillment of each rule relates to truth-
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value, i.e., the membership grade of a pattern to the
rule's class. The rules have the form of (1).

R :If xis Apandx .-+ is Azand -~ Xxis 4,

then class; (N

where xz{xl,xz,---xd} is a d -dimensional input
feature vector. A fuzzy singleton output of the ith
rule, class;is one of values{1,2,---npc}. The “and”
connective is modeled by a max operator. i,.is the
number of antecedent fuzzy sets in the ith rule.
Aj; denotes the j th Gaussiane fuzzy set in thei th rule
and is defined by

A(;‘ (X)= exp(—hii (X)), (2)
hi (X) = B - dji (X)), 3)

dy(x) =
] 1.k K\ d d\?
(le (x] _Clj) +'-~+Otl] (xa' —clj) ++0.’,] (xd_clj()4),

where dj;(x) is the weighted distance between x and
Cjj - a,.’]‘. (= 0)is a weighting factor for the & -th input
feature, A;(x) is a tuned distance, and f;(>0)is a
width parameter for the membership function.

The degree of activation of the ith rule is calcu-

lated as in (5).

@; (x) = n?i]

Al](x)|7 i:1’2"”’nr (5)

where [ i1s a max operator. The classifier output is
determined by the rule that has the highest degree of
activation as in (6). A crisp decision is made by taking
the class belonging to the fuzzy-rule with the maxi-
mum degree of activation.

. argmaxao;

1<i<n,

y=class;, i (6)

In the following, we assume that the number of
rules is equal to that of classes, i.e.,n,. =n e - The cer-
tainty degree of the decision is given by the normal-
ized degree of firing of the rule as in (7).

%
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3. IDENTIFYING FUZZY CLASSIFICATION
RULES

CF = (7

3.1. Overview of evolutionary algorithm based hard
clustering
Clustering is a traditional machine learning problem.
The most popular hard clustering method is the well-
known K-means algorithm. However, a number of
good reasons exist for considering other clustering
methods as well [11]. One alternative to the K-means

clustering algorithm is to consider an evolutionary
algorithm based clustering method, where the evolu-
tionary algorithm determines the cluster centers to
reduce the cluster dispersion measure or any other
measure related to cluster performance. In the cluster-
ing a collection of feature cases is partitioned into
classes by minimizing the objective function of (8).

pc n
Jo=22 8 |-l (8)

k=1i=1

here J_is a cluster dispersion measure to be mini-
mized, »is the number of feature vectors, Mpe is the
number of classes (groups) to be classified, oy is 1
when case i belongs to cluster £, 0 otherwise, x; is the
feature vector for case i, and c; is the vector for the
k th cluster center.

Implementing an evolutionary algorithm for search-
ing the cluster centers to minimize the objective func-
tion as in (8) is straightforward. Note that so far the
number of clusters was predefined. Extending the evo-
lutionary algorithm driven clustering to allow for a
varying number of clusters [1, 11] is now possible.
After starting out with a relatively large prescribed
number of clusters, we can let the number of clusters
vary by adding a penalty function to the cluster dis-
persion as in (9). This approach helps to reduce the
amount of over-fitting. In this regard, the additive
clustering approach, i.e., introducing a new cluster
gradually, seems to be more favorable.

J=J, +r-J,. 9)

Here y is a penalty factor and its value is problem
dependent. J,is the number of empty clusters. An
empty cluster, i.e., a dummy cluster, has no data
member.

3.2. Evolutionary supervised clustering

An evolving weighted Euclidean distance-based
clustering method, called evolutionary supervised
clustering (ESC) is proposed to induce Gaussian fuzzy
membership functions, which constitute the antece-
dents of fuzzy classification rules. The basic concept
of ESC is no more than a traditional evolutionary clus-
tering approach, but its particular implementation de-
tails are different. In traditional additive clustering, the
maximum distance between a feature vector and its
corresponding cluster center, or misclassification rate,
can be used as a criterion for introducing a new cluster.
However, a threshold value for the criterion is prob-
lem-dependent and has an influence on clustering per-
formance.

The important advantage of ESC is that no priori
knowledge is required. ESC constructs clusters one by
one for each pattern class. Before starting ESC, we
have to set “emax and dni, , which are the maxi-
mum number of clusters and the minimum number of
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feature vectors to be contained in one cluster, respec-
tively. A practical upper bound of seven can be placed
on ey since empirical evidence suggests that most
classification problems require fewer than seven clus-
ters per class. The value of "dyni, is equal to 2. For
each class, the algorithm searches one cluster in the
feature vectors set. After the search, the feature vec-
tors contained in the cluster are eliminated in the fea-
ture vectors set. If there exist more than "dy;, eature
vectors to classify in the feature vectors set, the search
process is continued. The same process is repeated for
all the remaining classes, i.e., the process is iterated
Pemax  times. Fig. 1 illustrates how ESC is processed,
in which 13 feature vectors for class 1 are marked by
circles and 14 feature vectors for class 2 are marked
by triangles. Part (a) is the initial state. Part (b)
shows the first identified cluster, C;, for class 1. After
removing the feature vectors contained in, Cj the
second cluster, C),, is identified as shown in Part (c).
No feature vectors are available for further clustering
for class 1, so from Part (a) the clustering is continued
for class 2. Part (d) shows the first identified cluster,
Cyy, for class 2. After removing the feature vectors
contained in, C,;the second cluster, C,,, is identi-
fied as shown in Part (e). The same procedure is ap-
plied for Part (f). The number of feature vectors con-
tained in each cluster must be greater than "dy,;, . If
the value of is set to 3, the clustering for C,;will not
be performed.

A cluster is defined by three parameters, i.e., its cen-
ter, radius, and weighting factors, as shown in (4). If
the distance between a feature vector and a cluster
center calculated by (4) is not greater than the radius
of the cluster, the feature vector belongs to the cluster.

During the evolution, the weighting factors C;, for
each cluster are searched in the range of real values.
The negative weighting factors are considered to be
zero, so the corresponding dimensions are neglected in
the calculation of (4). If all the weighting factors of a
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Fig.1. Illustrative examples of ESC.

cluster have the same values, the cluster has a hyper-
spherical region; otherwise, it has an ellipsoidal region.
The purpose of the weighting factors is to uncover the
hidden structure of the cluster for classifying the fea-
ture vectors. In the case of a hyper-dimensional sys-
tem whose underlying structure is unknown, the role
of the weighting factors becomes of utmost impor-
tance.

During ESC, iterative clustering is achieved by not
only maximizing classification defined by (10), but
also by minimizing the cluster dispersion measure and
the cluster radius defined by (11) and (12), respec-
tively.

Fotassip = % L) (10)

Here nis the number of feature vectors; B (x;) is 1 if
the i th feature vector x; is successfully classified, oth-
erwise 0.

1 &
fa’isperse = n_z ”xi - C” (1 1)

¢ =]

Here n, is the number of feature vectors contained in
the cluster c. ||| is defined as in (4).

fradius =r. (12)

Here r is the radius of the cluster ¢.

(10), (11), and (12) have different objectives, and
they must be combined into one. (13) will achieve this
combination.

fgoa/ =h- fclassiﬁ/ —h- fdisperse 3 fradius . (13

Here f,,q1s the final goal function to maximize and
r; is the ith weighting factor.
3.3. Differential evolution

As a search algorithm of ESC, real-valued differen-
tial evolution (DE) is used. DE has been proven to be
a promising candidate for minimizing real-valued,
multi-modal objective functions [14]. Besides its good
convergence properties, DE is simple to understand
and to implement. DE is a parallel direct search
method that utilizes #n, d -dimensional parameter
vectors as a population. The initial population is cho-
sen randomly. DE generates a new vector by adding
the weighted difference between the population vec-
tors to a third vector, and then a crossover operation is
performed. If the resulting vector yields a
higher/lower objective function value in the maximi-
zation/minimization problem than a predetermined
population member (old vector), the newly generated
vector replaces the old vector otherwise the old vector
is retained. Several variants of DE exist. The
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DE/rand1 scheme is to be used in this paper. In this
scheme, a new vector is generated as in (14).

Vi, g+ :prl’g +F p’z,g _pr3,g)’ i:1’2""’np (14)

Here v, g+ is the 7th new vector, n,is a population
size, gis an iteration (generation) number, p,, gl
the rth individual (vector), # R € l,n, |are mu-
tually different integers, and F is a posmve real di-
versity factor.

To increase the potential diversity of the perturbed
vectors of (14), crossover is introduced as in (15).

Viigtl if rand =c,
Pjig+ = Piig otherwise (15)
Jorj=12,-,d

Here p;; ., is the jth component of the i th

individual, v

ji.g+11S @ new vector generated by (14),

rand e[O 1] is a random number, c¢,is a crossover

rate, and d is a vector dimension.

The evolutionary search optimizes the clustering
process by evolving three independent parameters: the
position and the radius of the cluster and the weight-
ing factors of the input variables. During evolution,
these parameters are allowed to vary continually by
(15). Each individual Py, (z =1, for DE is con-
structed as shown in Flg 2. If the dimension of the
feature vector is, ¢ the number of parameters consti-
tuting an individual is equal to2-d +1. The effective-
ness of an individual is measured by its fitness. Since
the objective is classification, the measure of its fit-
ness is the ability to correctly classify the feature vec-
tors. (13) is used as a fitness function.

According to the above discussion, the summary of
the ESC algorithm follows.

Step 1: Define the maximum number of clusters,
n, ,and the minimum number of feature vectors to
be contamed in one cluster, g . . Initialize the pa-
rameters of DE, such as populatlon size R, maximum
generation number; crossover rate,c,.; and diversity
factor, /. The feature vectors are scaled to the range
of {0,1] to assist the optimization routines. Scaling
does not change the topology of the feature vector
space, but giving each variable the same range allows
similar search steps for each dimension.

Step 2: For a pattern class, DE searches an optimal
cluster maximizing (13).

Step 3: When the maximum generation number is
reached, DE terminates the process of searching the
cluster. If the searched best cluster contains feature
vectors less thann, it is deleted; otherwise, the
radius, the weighting %actors and the center points of
the cluster are saved. The feature vectors contained in
the cluster are removed in the feature vector set.

Step 4: If there exist feature vectors more
than ng . to classify in the feature vector set, go to
step 2.

Step 5: Iterate step 2 to step 4 for all the remaining
classes.

3.4. Conversion of clusters to fuzzy membership
functions

The clusters uncovered by ESC can be converted to
Gaussian fuzzy membership functions, whose vari-
ance reflects the tightness of the cluster. The member-
ship function of (2) requires the width parameter of
(3) and the weighting factors and the center points of
(4). Since the latter parameters are obtained from each
cluster, the only width parameter whose role is to ad-
just the width of the membership function is unknown.
The width is determined to give a degree of member-
ship of 0.5 for the boundary of the cluster as illus-
trated in Fig. 3. The width parameter, S, of the
membership function 4, (x) for each cluster is calcu-
lated by (16).

5 :_lr10.5. (16)
Tij
Here 7;1s the radius of the jth cluster for the ith
pattern class.

The determination of width parameters transform
clusters into Gaussian membership functions, which
constitute the antecedent fuzzy sets in the fuzzy classi-
fication rules of (1).

4. TEST EXAMPLES

Six test examples described in this section are from
the UCI repository databases [19]. For brevity the
fuzzy classifier constructed by ESC is hereinafter
called ESCGFCS. The results obtained by the
ESCGFCS are compared with those of other fuzzy
classifiers. They are also compared with those of the
commercial tool See5 [17], which is an extremely ro-
bust algorithm. The tests were run under the same ini-
tial setting for all parameters of the ESCGFCS. The
initial settings are summarized in Table 1. All the ran-
dom numbers are generated with uniform distribution.

The Fisher Iris data consist of 150 data with four
input features and three classes [19]. The Wine data
contains the chemical analysis of 178 wines produced
in the same region in Italy but derived from three dif-
ferent cultivators [19]. The problem is to classify the
three different types based on thirteen continuous at-
tributes derived from the chemical analysis. To obtain
an estimate for the classifier performance, we carried

cluster center
a1

Fig. 2. Individual for iterative clustering in ESC.
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Fig. 3. Conversion of hard-cluster to Gaussian-
membershin function.

out ten independent runs and averaged the classifica-
tion rates. Table 2 show performance comparison with
other fuzzy classifiers on these data sets.

The classification rate gives the number of correctly
classified data expressed as a percentage. In this case,
all the data are used for the training, i.e., there is no
separate test data set. It is done for the comparison
with other methods. As an equivalent measure, the
total number of membership functions used in the
fuzzy classifiers is expressed with the number of rules.
In case of the Iris data, the ESCGFCS with six mem-
bership functions and two cases of FMC with twelve
membership functions were able to identify the four
outliers, which limited the classification rate to
97.33%. In case of the Wine data, the ESCGFCS ob-
tains the best accuracy with far fewer membership

Table 1. Initial parameter setting for ECS.

Parameter Value
Population size (n,,) 30
Generations 300
Crossover rate (¢, ) 0.5
Diversity factor ( F') 0.5
Maximum number of

7
clusters ( ne )
Minimum number of data
to be contained in cluster 2

(ng )

min

Weighting factors (ag-)
of

random number
in the range of

) [-0.5,0.5]
. k random number
Center points (¢;; ) of (4) in the range of [0,1]

Radii (7; )

random number
in the range of [¢,1]

Weighting factors of (13)

n=1, rn=0.01,
r, =0.01

Table 2. Performance comparison (all data is used for
the training).

Data| Algorithm Parameters Classrlaigatlon
ESC 6 clusters {1,3,2} 97.93
. [Escares | O membership [ gq g
Iris functions, 3 rules
Fuzzy Model | 12 membership | 97.33, 98,
Classifier [8] functions 99.4
ESC 4 clusters {1,2,1} 98.7
4 membership
ESCGFCS functions, 3 rules 994
Wine|Fuzzy Classi-
fier [7] 60 rules 98.5
Fuzzy Classi4 11 membership
fier [9] functions, 3 rules 98.3,99.4

Table 3. Performance comparison (50% Jack-knife

test).

Data | Algorithm Parameters Class;izatmn
ESC 4 clusters 91.33
ESCGFCS 4 me?mbershlp func- 96.7

tions, 3 rules
Itis | Trainable
Fuzzy 6 membership func- 96
Classifier tions
[12]

functions. Fig. 4 shows the identified fuzzy classier
for the Wine data, in which the hidden structure of the
thirteen feature variables has been uncovered through
the evolutionary search of the corresponding weight-
ing factors.

Table 3 shows the performance comparison with
other fuzzy classifiers on the Iris data. A 50% Jack-
knife test was carried out. The ESCGFCS with fewer
rules had better performance.

Table 4 shows the performance comparison with
the commercial tool See5. To measure the perform-
ance, a 10-fold cross-validation was carried out. The
number of rules for See3 are counted by summing the
leaves on the tree or applying the expression (s +1)/2,
where is the size of the tree. Even though the
ESCGFCS needs much more computation time, it
shows a better classification rate with fewer member-
ship functions. For all cases, the ESCGFC is superior
to ESC due to the overlapping class definitions by
Gaussian fuzzy sets. As a result of ESC, Breast Can-
cer and Pima Indian have more than four clusters per
class. For these two cases, another 10-fold cross-
validation was carried out with the maximum number
of clusters, n = 4. The result is shown in Table 5.
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Fig. 4. The identified Gaussian fuzzy classification rules for the Wine data.

Table 4. Performance comparison (10-fold cross-

validation).
[ Classifi-
Data | Algorithm Parameters cation
rate
ESC 11.4 clusters 93.6
Breast ESCGECS 114 membershlp 96
Cancer functions, 2 rules
Sees 14.4 rules 95.7
ESC 4.7 clusters 91.9
Wis |ESCGFCs |+ membership func- o o
tions, 3 rules
See5 4.7 rules 95.3
ESC 4 clusters 76.7
4 membership func-
Lenses | ESCGFCS tions, 88.3
3 rules
SeeS 3.7 rules 84.5
ESC 14 clusters 59
Plrpa ESCGFCS 14 m'embershlp func- 75.4
Indian B tions, 2 rules
See5 28.8 rules 74.5
ESC 4.4 clusters 85.3
Wine [ESCGFCs |4 membership func- o o
tions, 3 rules
See$s 5.4 rules 93.8
ESC 7.9 clusters 84.5
7.9 membership func-
Zoo |ESCGFCS tions, 7 rules 94.3 |
See5 8.4 rules 93.5

For both cases, the training classification rates of
Bemax = 7 are higher those of Pepax = 4.

However, the testing classification rates make only a
minor difference. The ESCGFCS results in a higher
testing classification rate with Pep. = 4, ie., the
maximum four cluster are enough to classify patterns

correctly.

Table 5. Performance comparison for different
values of ne (10-fold cross-validation).

n, =17 n. =4
Data | Algorithm o e
trainingjtestingtrainingjtesting
Breast [ESC 97.6 193.6 | 96.6 | 93.3
Cancer ESCGFCS | 98.4 | 96 | 97.8 | 96.1
Pima [ESC 66.1 | 59 | 63.7 | 547
Indian ESCGFCS | 79.9 | 754 | 77.3 | 75.8

5. CONCLUSION

Since both classification performance and discover-
ing hidden structure are of major importance, focus is
given to identifying clusters of simple structure
through the proposed ESC and transforming them into
fuzzy classifiers with better performance. ESC re-
quires more computation time due to its iterative char-
acteristics. However, both the parallel runs of DE for
all the classes and the parallel implementation of DE
itself can overcome this disadvantage. The optimal
clusters identified by ESC are converted to Gaussian
membership functions, and they constitute antecedent
fuzzy sets in a set of fuzzy rules, where each rule clas-
sifies feature vectors into a class. The presented ap-
proach was tested by six classification problems and
compared with results from different classifiers. The
results show that the identified fuzzy classifiers have a
better average performance with regard to accuracy.
The ESCGFCS brings forth as many rules as pattern
classes, and at most four membership functions in
each rule is enough. Conclusively, the approach has
the potential to improve classification accuracy at the
cost of more computation time.
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