초록
인터넷, 데이타베이스, 멀티미디어 기술의 복합적인 영향으로 교육과 학습의 형태가 크게 변하고 있다. 그러나 강의 내용을 효과적으로 관리하고 검색할 수 있는 시스템과 도구의 부족으로 원격 학습은 크게 효과적이지 못하다. 이 논문은 대용량 강의 데이타베이스에서 사용자가 내용에 기반 하여 관심 있는 강의 부분만 발췌하여 접근할 수 있도록 하는 프로토타입 시스템 COVA를 소개한다. COVA는 원격 학습에서 내용 기반 강의 검색을 위한 다음과 같은 새로운 기법을 포함한다: (1) 강의 내용을 표현하기 위한 XML 기반의 준 구조적(semistructured) 데이타 모델, (2) XML 강의 데이타베이스의 구조적 요약, 즉, 스키마 추출 기법: (3) 원하는 강의 부분의 빠른 탐색을 위한 색인 기법.
Education and training are expected to change dramatically due to the combined impact of the Internet, database, and multimedia technologies However, the distance learning is often impeded by the lack of effective tools and system to manage and retrieve the lecture contents effectively. This paper introduces a prototype system called COVA that enables remote users to access specific parts of interest by contents from a large lecture database. COVA includes several novel techniques to achieve the content-based lecture retrieval in distance teaming: (1) The XML-based semistructured model to represent lecture contents; (2) The technique to build structural summaries, i.e., schemas, of XML lecture databases; (3) Index structures to speed up the search to find appropriate lecture contents.