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Abstract: In this study the GFDL GCM generated (controlled run) zonal average temperature data are evaluated by

comparing their EOFs with those from observed data. Even though the correlation matrices of observed and simulated

data are shown significantly different (Polyak and North, 1997b), the EOFs derived are found very similar with very

high pattern correlations. This means almost all the information (second-order statistics) derived from the observed data

can be reproduced by the EOFs derived from the GFDL GCM simulates. Also, the EOFs from GFDL GCM were found

to have more flexible structures than those from the observed. Thus, we may conclude that the GFDL GCM can simu-

late the Earth's energy balance system reasonably. However, more in detail research should be focused on the effect

from various forcings on climate variability, as, in some cases, the effect of external forcings could shadow the system

characteristics and mislead the simulation results.

1. INTRODUCTION

The papers by Polyak and North (1997a, b)
have motivated author to become interested in
the validation problem of GCM simulations.
Regardless of admitting that GCMs are far from
perfect to simulate the climate variability both in
time and space, these are, author believes, still
the most powerful and useful tools in the climate
research. Especially for the temperature field,
which has a long correlation length both in time
and space, a rather simple climate model like the
energy-balance model (North and Cahalan,
1981) has proven to simulate a realistic tem-
perature field successfully. Therefore, GCMs,

which has more complex structure considering
every possible aspects of energy and water bal-
ance, should give a better simulation provided a
proper parameterization is conditioned.

GCM validation problems can be found in
many studies (Katz, 1992; Oort, 1983; Santar
and Wigley, 1990), where they generally com-
pared the means and standard deviations of dif-
ferent atmospheric characteristics derived from
the observed and simulated data. Recently,
Polyak (1996), Polyak and North (1997a, b)
evaluated the spatial and temporal climate vari-
ability of the fluctuations of the surface air tem-
perature field. The surface air temperature is
believed to have the best accuracy compared
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with the other variables GCMs provide. The
analysis by Polyak (1996), Polyak and North
(1997a, b) were done for the zonal average
temperature (9° latitude bands for northern
hemisphere), and compared the monthly varia-
tion of standard deviations and correlation ma-
trices using the F-statistics (Devore, 1991) and
N-statistics (Rao, 1973). Unfortunately, they
reported quite disappointing mismatch between
observed and simulated data.

The reasons for their disappointing result may
be explained in many ways. However, the most
probable one is that the GCM did not consider
various external forcings to the climate system.
The only forcing considered in the GCM is the
concentration of CO, gas. Other important forc-
ings such as solar cycle, volcanic aerosol or an-
thropogenic aerosols were not generally consid-
ered. Thus the system output, even though both
systems are similar inside, can be very different
due to different external forcings. Also the other
reasons we may refer are improper parameteri-
zation, imperfect modeling for some aspects of
meteorology such as the cloud cover, improper
consideration of several feedback mechanisms,
and so on.

However, regardless of all the reasons, author
believes that the temperature field can be mod-
eled properly, which, at least, should be quite
realistic in the aspect of its first- and sec-
ond-order statistics. Thus, the sole object of this
research also lies on the validation of the sec-
ond-order statistics of the same zonal averaged
temperature field used by Polyak and North
(1997a, b).

One idea we can choose to accomplish the
research object might be to remove all the ef-
fects of different forcings and compare the sys-
tem characteristics just the same way as in
Polyak and North (1997a). However, even we
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assume that it is possible to remove the effects
of various forcings, it could be a huge job. Also,
even though it is worth while to do, only a few
are in the position of handling any GCM to take
this kind of whole procedure. Thus, author de-
cides to follow a rather simple procedure to
check if GCMs have the same or similar system
to the earth's. In that sense, the EOF (Empirical
Orthogonal Function) analysis is quite promis-
ing.

The EOFs is similar to normal modes in me-
chanical system. We also have similar terms
such as principal components in Statistics and
eigenvectors in Mathematics. EOF is a common
terminology in Atmospheric Sciences. Basically
EOFs represent the system characteristics and
can reproduce the system output as a linear
combination of them. North (1984) also showed
that in many systems the EQFs are identical to
the normal modes. The diffusion system, the
wave propagation, and the forced motion are
those among good examples.

One important fact we have to make sure to
do the EOF analysis for this research object is
that an external forcing will not change the sys-
tem itself. It is rather easy to imagine that for the
case of a mechanical system. For example, a
wave propagation system on a rod will have the
same normal modes regardless of any kind of
forcings (Kaplan, 1991). In fact, this was al-
ready observed by Preisendorfer (1979). Preis-
nedorfer et al. (1981) also provided the general
criteria for the EOF-normal mode symmetry to
occur. Also, North (1984) showed that in many
systems the EOFs are not frequency dependent.
He also showed that the symmetry in the me-
chanical operator and the same symmetry in the
forcing cause the EOF-normal mode coinci-
dence although the forcing is not "white".

As it is generally accepted, the temperature
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field on earth is a kind of diffusion system. Thus,
the EOF-normal model symmetry holds such as
in the model by North and Kahalan (1981), and
we can say the EOFs derived from observed
data could be treated as a characteristic feature
of the earth system. This characteristic (the
shape of EOFs) will not be changed due to any
kind of external forcings. Only the eigenvalues
will be differently weighted depending on the
characteristics of forcings.

Thus, based on the facts mentioned above, we
may evaluate the GCM simulates. It can simply
be done by deriving and comparing the EOFs
for the observed and simulated data. Also by
deriving the EOFs which satisfy both the two
different systems and by comparing them, we
may be able to distinguish a system which has
been more affected by the forcings with various
characteristics.

In this study, we will evaluate the GFDL
GCM generated (controlled) zonal average
temperature data (Polyak and North, 1997a, b).
Basically the correlation matrices of observed
and simulated data along with other summary
statistics are borrowed from their results. So,
this paper will spare a small portion for the data
description.

Summarizing the contents of the paper is as
follows. First, the next section is spared for the
background of EOF analysis and normal mode
for a mechanical system to get insights on the
physical meaning of the EOFs. We will also
consider a forced system with forcings both
white and colored to show that the EOF will
remain invariant regardless of the forcings. The
following section will be covered with the
summary statistics of both observed and simu-
lated data, and the comparison results of EOFs
derived in two different ways will cover the last
section.
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2. EOF AND NORMAL MODES IN THE
CASE OF CONTINUUM LINEAR
SYSTEM

North (1984) showed that in a large class of
linear stochastic models the EOFs (from the data
field generated by a model in the class) at indi-
vidual Fourier frequencies coincide with the
orthogonal mechanical modes of the system
provided they exist. The class of models con-
tains the wave equation, the diffusion equation,
and also the simple model by North and Cahalan
(1981), which are all the Hermitian mechanical
systems forced according to the following gov-

erning equation
H(Z,9 0% (1,0 = £(5,0) (1

along with homogeneous boundary conditions
(either W (r,t) or its derivative vanishes on

the boundary). Also, f(r,t) is a stochastic

field stationary in time and "white" in space, i.e.,

(fanf@ ) =c’(t-1hsc-r) 2

where S(r—1") is a Direc delta function and
ol(|t—1']) is some given autocovariance func-
tion. North explains it as a forcing of randomly
located point source with its strength modulated
by a stationary process.

The eigenvalues of an operator H are the so-
lutions é, a=1,2,...,0f

Hy, = 4.4, 3)

where the numbers 1 are the eigenvalues.

The eigenvalues of a Hermitian operator are real.
The eigenvectors of a normal operator are or-
thogonal and can be normalized such that

(Busbs) = 8.5 = [ 4, (D, (D)0 @
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where ¢ and ¢, correspond to distinctly

different eigenvalues 4 and A 5 Usually it is

possible to show that for well-behaved operators
acting upon a bounded domain, the eigenvectors
from a complete basis set, which may be ex-
pressed

2. (06,(1) = 5(r—1) ©)
When this holds, any function in the space
can be written in the infinite series representa-

tion
#0)= 4,4, (6)

A normal operator can be decomposed into an
expansion of its eigenvectors and eigenvalues

H(r,r) =Y 2,4, (04, (1) ™)

Two operators (let say A and B) can have si-
multaneously the same eigenvectors if, and only
if, they commute (that is, if AB=BA). The in-
verse of an operator A, denoted AT, ordinarily
exist if A has no vanishing eigenvalues. For a
product (AB) ! = B'A™. An operator commutes
with itself and any power of itself including its
inverse. Conditioned this, Hermitian mechanical
systems forced according to (1), (2) have their
EOFs coincide with the normal mechanical
modes, defined as the eigenfunctions of H.

3. SUMMARY STATISTICS OF GFDL
GCM TEMPERATURE SIMULATES

3.1 Data Description

The temperature fields from the simulations
by the GFDL coupled ocean-atmosphere GCM
is used in the study. Physical analysis of the re-
sults of the experiment is provided by Manabe et
al. (1991, 1992).
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Two kinds of simulated monthly fields of the
surface air temperature are available: a control
run with CO, fixed and a transient run with CO,
initialized at the 1958 amount and increased by
1% each year thereafter. Both runs are 100 years
long with monthly resolution. The spatial grid is
48x40 boxes on the so-called Gaussian grid co-
ordinates. There are 48 boxes around 360° of
longitude, hence 7.5° per box. There are 40
boxes along 180° of latitude, hence 4.5° per box.
Also the source of the observed data is the
United Kingdom's monthly surface observations
for 1891-1990 (Jones at al., 1986).

The samples of northern hemisphere surface
air temperature studied here (also in Polyak and
North, 1997a, b) were obtained by spatially av-
eraging data within different 9° latitude bands.
Therefore simulations given for 4.5° width lati-
tude grid were additionally averaged for each
pair of the adjacent latitude zones and along all
the longitude points. As a result, 10 time series
were obtained for each 10 latitudinal bands of 9°
width of the northern hemisphere. Analogous
averaging was done for the observed data
(Polyak and North, 1997).

As the purpose of the study is to validate the
simulated surface air temperature variability, we
will limit our analysis to the control run. As
Polyak and North (1997) said, the air tempera-
ture anomalies (seasonal cycle removed) from
the control run does not have a deterministic
component. However, the transient run anoma-
lies have shown a significant trend.

3.2 Correlation Matrices Comparison

Using the zonal average temperature anoma-
lies for both observed and simulated data the
correlation matrices were derived for both lag-0
(the spatial correlation field) and lag-1 month
(Table 1). For the correlation matrix for lag-0 of
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Table 1. Correlation matrices of observed data (top, lag-0 and bottom, lag-1 cases)
85.5 76.5 67.5 58.5 49.5 40.5 31.5 22.5 13.5 4.5
85.5 1.00 0.74 0.40 0.14 -0.03 -0.09 -0.08 -0.05 0.00 -0.06
76.5 0.74 1.00 0.80 0.35 0.04 -0.05 -0.04 0.03 0.04 -0.05
67.5 0.40 0.80 1.00 0.69 0.25 0.02 0.00 0.05 0.02 -0.09
58.5 0.14 0.35 0.69 1.00 0.75 0.32 0.16 0.08 0.01 -0.04
49.5 -0.03 0.04 0.25 0.75 1.00 0.76 0.45 0.07 -0.01 0.00
40.5 -0.09 -0.05 0.02 0.32 0.76 1.00 0.78 0.10 -0.05 -0.05
31.5 -0.08 -0.04 0.00 0.16 0.45 0.78 1.00 0.50 0.19 0.08
22.5 -0.05 0.03 0.05 0.08 0.07 0.10 0.50 1.00 0.85 0.64
13.5 0.00 0.04 0.02 0.01 -0.01 -0.05 0.19 0.85 1.00 0.87
4.5 -0.06 -0.05 -0.09 -0.04 0.00 -0.05 0.08 0.64 0.87 1.00
85.5 76.5 67.5 58.5 49.5 40.5 31.5 22.5 13.5 4.5
85.5 0.15 0.16 0.11 0.10 0.05 0.01 0.03 -0.02 -0.02 -0.07
76.5 0.15 0.26 0.23 0.18 0.11 0.08 0.13 0.06 0.00 -0.06
67.5 0.11 0.22 0.28 0.28 0.17 0.10 0.17 0.11 0.02 -0.06
58.5 0.11 0.21 0.34 0.45 0.30 0.12 0.16 0.12 0.05 0.02
49.5 0.10 0.17 0.29 0.49 0.47 0.29 0.21 0.07 0.04 0.04
40.5 0.04 0.10 0.19 0.36 0.44 0.41 0.32 0.04 -0.02 -0.03
31.5 0.03 0.09 0.14 0.28 0.34 0.37 0.49 0.34 0.21 0.11
22.5 0.01 0.06 0.06 0.11 0.10 0.09 0.37 0.79 0.77 0.65
13.5 -0.03 0.00 -0.02 -0.01 0.02 0.00 0.20 0.75 0.89 0.85
4.5 -0.06 -0.06 -0.12 -0.06 0.01 -0.03 0.07 0.58 0.79 0.93
Table 2. Correlation Matrices of Simulated data (top, lag-0 and bottom, lag-1 cases)Data
85.5 76.5 67.5 58.5 49.5 40.5 31.5 22.5 13.5 4.5
85.5 1.00 0.47 -0.02 -0.05 -0.16 -0.02 0.00 -0.06 0.05 -0.07
76.5 0.47 1.00 0.58 0.00 -0.11 -0.13 -0.05 0.04 0.01 0.01
67.5 -0.02 0.58 1.00 0.57 0.02 -0.14 -0.12 -0.02 0.04 0.02
58.5 -0.05 0.00 0.57 1.00 0.57 0.04 -0.09 -0.04 -0.01 0.03
49.5 -0.16 -0.11 0.02 0.57 1.00 0.56 0.13 0.12 0.01 0.13
40.5 -0.02 -0.13 -0.14 0.04 0.56 1.00 0.62 0.17 0.12 0.17
31.5 0.00 -0.05 -0.12 -0.09 0.13 0.62 1.00 0.57 0.15 0.26
22.5 -0.06 0.04 -0.02 -0.04 0.12 0.17 0.57 1.00 0.63 0.29
13.5 0.05 0.01 0.04 -0.01 0.01 0.12 0.15 0.63 1.00 0.56
4.5 -0.07 0.01 0.02 0.03 0.13 0.17 0.26 0.29 0.56 1.00
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85.5 76.5 67.5 58.5 49.5 40.5 315 22.5 13.5 4.5
85.5 0.05 0.08 0.05 0.05 0.06 0.05 0.05 0.04 0.02 0.00
76.5 0.05 0.17 0.15 0.09 0.10 0.07 0.07 0.07 0.06 0.06
67.5 0.07 0.20 0.23 0.17 0.13 0.09 0.05 0.03 0.04 0.07
58.5 0.04 0.13 0.19 0.26 0.23 0.11 0.04 0.03 0.01 0.05
49.5 0.01 0.03 0.11 0.26 0.35 0.25 0.12 0.08 0.05 0.09
40.5 0.00 -0.02 0.03 0.13 0.31 0.43 0.31 0.17 0.15 0.18
315 -0.04 -0.02 0.03 0.07 0.19 0.36 0.43 0.30 0.19 0.24
22.5 -0.02 0.01 0.01 0.06 0.15 0.18 0.30 0.40 0.29 0.25
13.5 0.00 0.01 0.01 0.02 0.07 0.10 0.15 0.30 0.39 0.35
4.5 -0.03 -0.01 0.05 0.06 0.09 0.14 0.16 0.20 0.34 0.56
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Figure 1. Comparison of EOFs derived from spatial (lag-0) correlation matrices
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Figure 2. Comparison of EOFs derived from lag-1 correlation matrice

such that
C=VLV' (8)
The columns of V, denoted by V,, for i=I,

2,..., 10, are called the eigenvectors of C and the

corresponding diagonal elements of L, denoted
by A, are called the eigenvalues. For each i,

the relation AV, =1V, holds.

Also we can estimate the common eigenvec-
tors (EOFs) by applying the maximum likeli-
hood or least square estimates. For this the

genvectors might be difficult to be obtained
from a short record of observation (Kim and
North, 1993). However in our case, as we have
enough data set, we may be able to assume that
the EOFs derived are quite accurate (especially
the lag-0 case).

From Figure 1, we can also easily find that
the EOFs for both observed and GCM simula-
tions are very similar. Basically, 6 out of 10
EOFs are almost identical, another two is ex-
actly the reversed (so we can match them simply
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Table 3. Eigenvalu’es (Cumulative variance) for each EOF

1 3.02 (30.2) 2.58 (25.8) 2.41 (47.0) 1.51 (46.3)
2 2.69 (57.1) 1.93 (45.1) 1.85 (80.6) 0.71 (68.0)
3 2.24(79.5) 1.78 (62.9) 0.41 (88.9) 0.53 (84.4)
4 0.97 (89.2) 1.28 (75.7) 0.34 (95.8) 0.28 (91.3)
5 0.56 (94.8) 0.85 (84.2) 0.11 (98.1) 0.17 (96.7)
6 0.29 (97.7) 0.68 (91.0) 0.05 (99.2) 0.08 (99.1)
7 0.11 (98.8) 0.46 (95.6) 0.04 (100.0) 0.02 (99.7)
8 0.07 (99.5) 0.37 (99.3) - 0.01 (100.0)
9 0.03 (99.8) 0.06 (99.8) - -

10 0.02 (100.0) 0.02 (100.0) - -

Table 4. Pattern correlation between the observed and simulated EOFs.

1 0.672 0.881
2 0.678 0.906
3 0.838 0.878
4 0.784 0.946
3 0.961 0.406
6 0.915 0.066
7 0.926 0.284
8 0.928 0.737
9 0.971 0.462
10 0.966 0.463
by use of negative weightings), and the last two, R, =3 65" g% | (9)

which has the biggest eigenvalues are more or less
similar. In case of combining the first and second
eigenvalue and comparing it with the others’ first or
second EOF, we may see a much better match (this
opens the possibility that the EOFs could have been
intermingled). How these two sets of EOF match
can be evaluated using the pattern correlation. The

pattern correlation, R, , is defined by

at

where % and ¢ are components of

each eigenvectors of simulated and observed
data. Summarizing the pattern correlation is as
in Table 4.

As you can be seen in Table 4 the pattern
correlations between two sets of EOFs is very
high, especially in the high modes for lag-0 case
and low models for lag-1 case. For the case of
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lag-0 (spatial correlation) about 50% of total
variability is explained by the first two EOFs.
Thus major difference between two correlation
matrices is come from the differences between
these EOFs. However, as the pattern correlations
between these first two EOFs are almost 0.7, the
difference of the two system we consider may
not be significant. If considering all the EOFs,
the average pattern correlation is about 0.9 and
we may say that these two systems have similar
characteristics.

The lag-1 case is more appealing. As the first
four EOFs explain more that 95% of total variabil-
ity, we may more concentrate on the first four EOF.
In that case, the average pattern correlation is also
more than 0.9, which must be a quite satisfactory
result to make sure the resemblance of the two
systems. Only the high mode EOFs show some-
what low pattern correlations, which may be
mainly due to the matrix singularity and somewhat
skewed estimation of EOFs.

It is also interesting that the common EOFs
derived are almost identical to those of GCMs.
This means that the GCM has more flexible
structure and, thus, can mimic the observed bet-
ter than the case vise versa. Also we can con-
jecture that the GCMs are less or simply forced
than the observed. It is well known that GCMs
just mimic the earth system and the simulations
used in this research are the one with simplified
forcings. The common EOFs for lag-1 case
could not be derived because of the same reason

mentioned above.

4. CONCLUSION

In this study the GFDL GCM generated (con-
trolled run) zonal average temperature data are
evaluated by comparing its EOFs and those
from observed data. Even though the correlation
matrices of observed and simulated data are
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shown significantly different (Polyak and North,
1997b), the EOF derived are found very similar
(with high pattern correlations). Considering
that the output statistics of a system, especially
the second-order one, can be totally different
depending on the input statistics, a simple com-
parison of output statistics for the evaluation of
a system may mislead the idea on the system
itself. They should be given the quantitative
consideration of external forcings. The same is
also be applied to the GCM evaluation of its
capability to reproduce the realistic climate fea-
tures.

In many kinds of mechanical system such as
the wave propagation or diffusion system, as the
EOFs, which decide the system characteristics
as a linear combination of them along with
proper weightings (so-called eigenvalues), is
invariant for a external forcings, only the
weightings (eigenvalues) will be changed in an
ideal case. In our study, we analyzed the corre-
lation matrices both zonal averaged temperature
time series of observed and simulated by the
GFDL GCM. Basically, we showed that the
EOFs for both system are very similar with high
pattern correlations so that one can be repro-
duced by another. Thus, we believe the results
by Polyak and North (1997b) is somewhat mis-
leading the capability of GFDL GCM. Also the
EOFs from GFDL GCM was found to have
more flexible structures than those from the ob-
served.

Based on these findings in our research, we
conclude that the GFDL GCM can simulate the
earth's energy balance system quite well. How-
ever, more in detail research should be given to
the effect from wvarious forcings on climate
variability, as, in some cases, the effect of ex-
ternal forcings could shadow the system charac-

teristics and mislead the simulation results. Also,
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how the external forcings are reacted to each
EOF to change the variability of a given field is
another interesting topic to consider.
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