Vascular Endothelial Growth Factor Upregulates Follistatin in Human Umbilical Vein Endothelial Cells

  • Oh, In-Suk (Division of Biological Sciences, Institute of Molecular Biology & Genetics, Chonbuk National University) ;
  • Kim, Hwan-Gyu (Division of Biological Sciences, Institute of Molecular Biology & Genetics, Chonbuk National University)
  • 발행 : 2004.06.01

초록

Vascular endothelial growth factor (VEGF), plays a key role in angiogenesis. Many endogenous factors can affect angiogenesis in endothelial cells. VEGF is known to be a strong migration, sprouting, survival, and proliferation factor for endothelial cells during angiogenesis in endothelial cells. Searching for novel genes involved in VEGF signaling during angiogenesis, we carried out differential display polymerase chain reaction on RNA from VEGF-stimulated human umbilical vein endothelial cells (HUVECs). In this study, follistatin (FS) differentially expressed in VEGF-treated HUVECs, compared with controls. Addition of VEGF (10ng/L) produced an approximately 11.8-fold increase of FS mRNA. F5 or VEGF produced approximately 1.8- or 2.9-fold increases, respectively, in matrix metalloproteinase-2 (MMP-2) secretion for 12h, compared to the addition of a control buffer. We suggest that VEGF may affect the angiogenic effect of HUVECs, through a combination of the direct effects of VEGF itself, and the indirect effects mediated via induction of FS in vitro.

키워드

참고문헌

  1. J. Biol. Chem. v.273 Vascular endothelial growth factor regulates endothelial ell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway Gerber,H.P.;A.McMurtrey;J.Kowalski;M.Yan;B.A.Keyt;V.Dixit;N.Ferrara https://doi.org/10.1074/jbc.273.46.30336
  2. Eur. J. Cancer v.32 Vascular endothelial growth factor Ferrara,N. https://doi.org/10.1016/S0959-8049(96)00387-5
  3. Nat. Med. v.9 Angiogenesis in health and disease Carmeliet,P. https://doi.org/10.1038/nm0603-653
  4. Science v.255 The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor de Vries,C.;J..Escobedo;H.Ueno;K.Houck;N.Ferrara;L.T.Williams https://doi.org/10.1126/science.1312256
  5. Cell v.72 High affinity VEGF binding and developmental expression sug gest Flk-1 as a major regulator of vasculogenesis and angiogenesis Millauer,B.;S.Wizigmann-Voos;H.Schnurch;R.Martinez;N.P.H.Moller;W.Risau;A.Ulrich https://doi.org/10.1016/0092-8674(93)90573-9
  6. Arch. Surg. v.128 Therapeutic angiogenesis Hockel,M.;K.Schlenger;S.Doctrow;T.Kissel;P.Vaupel https://doi.org/10.1001/archsurg.1993.01420160061009
  7. Nat. Med. v.5 Therapeutic angiogenesis for heart failure Isner,J.M.;D.W.Losordo https://doi.org/10.1038/8374
  8. J. Biol. Chem. v.276 Hypoia-inducible factor-2alpha (HIF-2alpha) is involved in the apoptotic response to hypoglycemia but not to hypoxia Brusselmans,K.;F.Bono;P.Maxwell;Y.Dor;M.Dewerchin;D.Collen;J.M.Herbert;P.Carmeliet https://doi.org/10.1074/jbc.C100428200
  9. FASEB J. v.13 Vascular endothelial growth factor(VEGF) and its receptors Neufeld,G.;T.Cohen;S.Gengrinovitch;Z.Poltorak https://doi.org/10.1096/fasebj.13.1.9
  10. Biochem. Biophys. Res. Commu. v.149 The isolation of polypeptides with FSH suppressing activity from bovine follicular fluid which are structurally different to inhibin Robertson,D.M.;R.Klein;F.L. de Vos;R.I.McLachlan;R.E.Wettenhall;M.T.Hearn;H.G.Burger;D.M. de Kretser https://doi.org/10.1016/0006-291X(87)90430-X
  11. Proc. Natl. Acad. Sci. USA v.84 Isolation and partial characterization of follistatin: a single-chain Mr 35,000 monomeric protein that inhibits the release of follicle-stimulating hormone Ueno,N.;N.Ling;S.Y.Ying;F.Esch;S.Shimasaki;R.Guillemin https://doi.org/10.1073/pnas.84.23.8282
  12. Mol. Cell. Endocrinol. v.172 Follistatin production by skin fibroblasts and its regulation by dexamethasone Kawakami,S.;Y.Fujii;S.J.Winters https://doi.org/10.1016/S0303-7207(00)00371-3
  13. Exp. Biol. Med. v.214 Inhibins, activins, and follistatins: the saga continues DePaolo,L.V. https://doi.org/10.3181/00379727-214-44100
  14. Nature v.386 Mechanisms of angiogenesis Risau,W. https://doi.org/10.1038/386671a0
  15. J. Biol. Chem. v.267 Angiogenesis Folkman,J.;Y.Shing
  16. Cell v.92 Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity Brooks,P.C.;S.Silletti;T.L. von Schalscha;M.Friedlander;D.A.Cheresh https://doi.org/10.1016/S0092-8674(00)80931-9
  17. Science v.257 Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction Liang,P.;A.B.Pardee https://doi.org/10.1126/science.1354393
  18. J. Biol. Chem. v.274 Molecular cloning, expression, and characterization of angiopoietin-related protein induces endothelial cell sprouting Kim,I.;S.O.Moon;K.N.Koh;H.Kim;C.S.Uhm;H.J.Kwak;N.G.Kim;G.Y.Koh https://doi.org/10.1074/jbc.274.37.26523
  19. Cell and tissue culture: Labortory procedures Kleiner,D.E.;I.M.K.Margulis;W.G.Stetler-Stevenson;A.Doyle.(ed.);J.B.Griffiths(ed.);D.G.Newell(ed.)
  20. Neuro-oncol. v.5 Antiangiogenic effects of dexamethasone in 9L gliosarocma as sessed by MRI cerebral blood volume maps Badruddoja,M.A.;H.G.Krouwer;S.D.Rand;K.J.Rebro;A.P.Pathak;K.M.Schmainda https://doi.org/10.1215/S1152851703000073
  21. Am. J. Physiol. Lung Cell. Mol. Physiol. v.286 DNA microarray analysis of neonatal mouse lung connects regulation of KDR with dexamethasone-induced inhibition of alveolar formation Clerch,L.B.;A.S.Baras;G.D.Massaro;E.P.Hoffman;D.Massaro https://doi.org/10.1152/ajplung.00306.2003
  22. Endocrinology v.130 Follistatin gene expression in the pituitary: loalization in gonadotropes and folliculostellate cells in diestrous rats Kaiser,U.B.;B.L.Lee;R.S.Carroll;G.Unabia;W.W.Chin;G.V.Childs https://doi.org/10.1210/en.130.5.3048
  23. Lab. Invest. v.76 The activin-binding protein follistatin regulates autocrine endothelial cell activity and induces angiogenesis Kozian,D.H.;M.Ziche;H.G.Augustin
  24. Enzyme Protein v.49 Angiogenesis: a paradigm for balanced extracellular proteolysis during cell migration and morphogenesis Pepper,J.S.;R.Montesano;S.J.Mandriota;L.Orci;J.D.Vassalli https://doi.org/10.1159/000468622
  25. Cell v.95 Matrix metalloproteinases regulate neovas-cularization by acting as pericellular fibrinolysins Hiraoka,N.;E.Allen;I.J.Apel;M.R.Gyetko;S.J.Weiss https://doi.org/10.1016/S0092-8674(00)81768-7
  26. Angiogenesis v.6 Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases Brown,M.D.;O.Hudlicka https://doi.org/10.1023/A:1025809808697
  27. IUBMB Life v.52 VEGF receptor signaling and endothelial function Kliche,S.;J.Waltenberger https://doi.org/10.1080/15216540252774784
  28. Circ. Res. v.83 Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells: role of flt-1 Wang,H.;J.A.Keiser https://doi.org/10.1161/01.RES.83.8.832
  29. Thromb. Haemost. v.85 Expression of vascular endothelial growth factor in human monocyte/macrophages stimulated with lipopolysaccharide Itaya,H.;T.Imaizumi;H.Yoshida;M.Koyama;S.Suzuki;K.Satoh
  30. Am. J. Physiol. Heart Circ. Physiol. v.279 Matrix metalloproteinase activity is required for activity-induced angiogenesis in rat skeletal muscle Haas,T.L.;M.Milkiewicz;S.J.Davis;A.L.Zhou;S.Egginton;M.D.Brown;J.A.Madri;O.Hudlicka https://doi.org/10.1152/ajpheart.2000.279.4.H1540