On-line Monitoring and Control of Substrate Concentrations in Biological Processes by Flow Injection Analysis Systems

  • Rhee, Jong-Il (BioProcess Technology lab., Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Adnan Ritzka (Institute of Technical Chemistry, University of Hannover) ;
  • Thomas Scheper (Institute of Technical Chemistry, University of Hannover)
  • Published : 2004.06.01

Abstract

Concentrations of substrates, glucose, and ammionia in biological processes have been on-line monitored by using glucose-flow injection (FIA) and ammonia-FIA systems. Based on the on-line monitored data the concentrations of substrates have been controlled by an on-off controller, a PID controller, and a neural network (NN) based controller. A simulation program has been developed to test the control quality of each controller and to estimate the control parameters. The on-off controller often produced high oscillations at the set point due to its low robustness. The control quality of a PID controller could have been improved by a high analysis frequency and by a short residence time of sample in a FIA system. A NN-based controller with 3 layers has been developed, and a 3(input)-2(hidden)-1(output) network structure has been found to be optimal for the NN-based controller. The performance of the three controllers has been tested in a simulated process as well as in a cultivation process of Saccharomyces cerevisiae, and the performance has also been compared to simulation results. The NN-based controller with the 3-2-1 network structure was robust and stable against some disturbances, such as a sudden injection of distilled water into a biological process.

Keywords

References

  1. Automatica v.23 The control of fed-batch fermentation processes: A survey Johnson,A. https://doi.org/10.1016/0005-1098(87)90026-4
  2. Appl. Env. Microbiol. v.57 A predictive and feedback control algorithm maintains a constant glucose concentration in fed-batch fermentations Kleman,G.L.;J.J.Chalmers;G.W.Luli;W.R.Strohl
  3. Biotechnol. Bioeng. v.39 Design and evaluation of control strategies for high cell density fermentations O'Conner,G.M.;F.Sanchez-Riera;C.L.Cooney https://doi.org/10.1002/bit.260390307
  4. Biotechnique v.4 Microcomputer-control of fermentation processes Strohl,W.R.;P.L.Lorensen;S.M.Schlasner
  5. Bio/Technology v.7 Increased biomas production in a benchtop fermentor Eppstein,L.;J.Shevitz;X.M.Yang;S.Weiss
  6. Biotechnol. Bioeng. v.34 Optimization of Esherichia coli growth by controlled addition of glucose Robbins Jr., J.W.;K.B.Taylor https://doi.org/10.1002/bit.260341007
  7. J. Ferment. Technol. v.66 Effect and control of glucose feeding on bacitracin production be fedbatch culture of Bacillus licheniforis Suzuki,T.;T.Yamane;S.Shimizu https://doi.org/10.1016/0385-6380(88)90133-1
  8. Biotechnol. Bioeng. v.35 Growth monitoring and control through omputer-aided on-line mass balancing in fed-batch penicillin fermentation Mou,D.G.;C.L.Cooney https://doi.org/10.1002/bit.260350313
  9. Biotechnol. Tech. v.1 An automatic, on-line glucose analyzer for feedback control of fed-batch growth of Escherichia coli. Luli,G.W.;S.M.Schlasner;D.Ordaz;M.Mason;W.R.Strohl https://doi.org/10.1007/BF00155459
  10. Ph.D. thesis. University of Hannover Analytik und Regelung von BIotechnischen Prozessen Ritzka,A.
  11. Anal. Chim. Acta. v.261 The second coming of flow-injection analysis Ruzicka,J. https://doi.org/10.1016/0003-2670(92)80169-8
  12. Trends Anal. Chem. v.17 Flow injection analysis: Where are we heading? Ruzicka,J.;E.H.Hansen https://doi.org/10.1016/S0165-9936(97)00118-0
  13. Curr. Opin. Biotech. v.8 Fermentation monitoring and process control Ritzka,A.;P.Sosnitza;R.Ulber;T.Scheper https://doi.org/10.1016/S0958-1669(97)80095-X
  14. Anal. Chim. Acta v.274 Flowinjection analysis for the measurement of penicillin V in fermentation media Carlsen,M.;L.Christensen;J.Nielsen https://doi.org/10.1016/0003-2670(93)80611-N
  15. Anal. Lett. v.30 An enzymatic method for the determination of ATP and glycerol with an automated FIA system Kiranas,E.R.;M.I.Karayannis;S.M.Tzouwara-Karayanni https://doi.org/10.1080/00032719708001800
  16. Biotechnol. Bioeng. v.52 On-line monitoring of intracellular ATP concentration in Escherichia coli fermentation Lasko,D.R.;D.I.C.Wang https://doi.org/10.1002/(SICI)1097-0290(19961105)52:3<364::AID-BIT2>3.0.CO;2-I
  17. Adv. Bioprocess Eng. v.2 On-line monitoring of intracellular properties and its use in bioreactor operation Mutharasan,R.
  18. Biotechnol. Bioeng. v.34 A flow injection analysis system for fermentation monitoring and control Garn,M.;M.Gisin;C.Thommen https://doi.org/10.1002/bit.260340402
  19. Trends Biotechnol. v.14 Challenges in integrating biosensors and FIA for on-line monitoring and control Schugerl,K.;B.Hitzmann;H.Jurgens;T.Kullick;R.Ulber;B.Weigel https://doi.org/10.1016/0167-7799(96)80910-3
  20. J. Biotechnol. v.52 Bioproess automation and bioprocess design Sonnleitner,B. https://doi.org/10.1016/S0168-1656(96)01642-2
  21. Anal. Chim. Acta v.292 An autoated system for multichannel flow-injection analysis Spohn,U.;J. van der Pol;R.Eberhardt;B.Joksch;C.Wandrey https://doi.org/10.1016/0003-2670(93)E0662-Q
  22. Trend. Anal. Chem. v.15 Applications of flow injection analysis to analytical biotechnology Keay,P.J.;Y.Wang
  23. Trends Biotechnol. v.14 Automation of selective assays for on-line bioprocess monitoring by flow-injection analysis Van der Pol,J.J.;C.D de Gooijer;M.Biselli;C.Wandrey;J.Tramper https://doi.org/10.1016/S0167-7799(96)10065-2
  24. J. Ferment. Bioeng. v.83 Coloinic acid production from Escherichia coli in fed-batch culture under the control of ammonium ions using a FIA system Honda,H.;T.Nakazeko;K.Ogiso;Y.Kawase;N.Aoki;M.Kawase;H.Kobayashi https://doi.org/10.1016/S0922-338X(97)87328-X
  25. Anal. Chim. Acta v.355 The influenece of metabolites on enzyme based flow injection analysis Rhee,J.I.;K.Schugerl https://doi.org/10.1016/S0003-2670(97)81611-X
  26. On-line-Meβmethoden zur Regelung von ammonia in Bioprozessen Ritzka,A.;J.I.Rhee;R.Ulber;K.Schugerl;T.Scheper
  27. Trends Biotechnol. v.12 Neural network contributions in biotechnology Montague,G.;J.Morris https://doi.org/10.1016/0167-7799(94)90048-5
  28. Neural networks for control system; A survey v.28 Hunt,K.J.;D.Sbaebaro;R.Zbikowski;P.J.Gawthrop
  29. AIChE J. v.42 Neural network architecture for process control based on the RTRL algorithm Chovan,T.;T.arfolis;K.Meert https://doi.org/10.1002/aic.690420218
  30. Programmierung neuronaler Netze, eine Turbo Pascal Toolbox Kruse,H.;R.Mangold;B.Mechler;O.Penger
  31. Einfuhrung in die Numerische Mathematik I. (4th ed.) Stoer,J.
  32. J. Biotechnol. v.55 Influence of the medium composition and plasmid combination on the growth of recombinant Escherichia coli JM 109 and on the production of the β-lactamase and the fusion protein EcoRI:SPA Rhee,J.I.;J.Bode;J.C.Diaz-Ricci;D.Poock;B.Weigel;G.Kretzmer;K.Schugerl https://doi.org/10.1016/S0168-1656(97)00058-8
  33. Biotechnol. Bioeng. v.42 Optimization of 2,3-butanediol production by Klebsiella oxytoca through oxygen transfer rate control Beronio,P.B.;G.T.Tsao https://doi.org/10.1002/bit.260421102
  34. Appl. Environ. Microbiol. v.57 Metabolic engineering of Klebsiella oxytoca M5Al for ethanol production from xylose and glucose Ohta,K.;D.B.Beall;J.P.Mejia
  35. Biotechnol. Bioeng. v.23 Maimum production in a Bakers' yeast fed-batch culture by a tubing method Dairaku,K.;Y.Yamasaki;K.Kuki;S.Shioya;T.Takamatsu https://doi.org/10.1002/bit.260230911
  36. J. Chem. Eng. Japan v.21 Comparison of control techniques for baker's yeast culture using an automatic glucose analyzer Shimizu,K.;M.Morikawa;S.Mizutani;S.Iijima;M.Matsubara;T.Kobayashi https://doi.org/10.1252/jcej.21.113
  37. Biotechnol. Bioeng. v.21 Mathematical model of cell growth and phosphatase biosynthesis in Saccharomyces carlsbergensis under phosphate limitation Toda,K.;I.Yabe https://doi.org/10.1002/bit.260210310
  38. Kor. J. Biotechnol. Bioeng. v.16 Control of ammonium concentration in biological processes using a flow injection analysis technique Rhee,J.I.
  39. J. Biotechnol. v.31 Which requirements do flow injection analyzer/biosensor systems have to meet for controlling the bioprocess Schugerl,K. https://doi.org/10.1016/0168-1656(93)90071-T
  40. J. Ferment. Technol. v.63 Ammonia concentration control in fed-batch fermentations of Saccharomyces cerevisiae Kole,M.M.;B.G.Thomson;D.F.Gerson
  41. Biotechnol. Bioeng. v.27 Control of ammonia concentration in Escherichia coli fermentations Thomson,B.G.;M.Kole;D.F.Gerson https://doi.org/10.1002/bit.260270610
  42. Appl. Microbiol. Biotechnol. v.44 Growth inhibition by ammonia and use of a pH-controlled feeding strategy for the effective cultivation of Mycobacterium chlorophenolicum Wittmann,C.;A.P.Zeng;W.D.Deckwer https://doi.org/10.1007/BF00169954