The Effect of Molecular Weight and the Linear Velocity of Drum Surface on the Properties of Electrospun Poly(ethylene terephthalate) Nonwovens

  • Kim, Kwan-Woo (Department of Textile Engineering, Chonbuk National University) ;
  • Lee, Keun-Hyung (Department of Advanced Organic Materials Engineering, Chonbuk National University) ;
  • Khil, Myung-Seob (Department of Textile Engineering, Chonbuk National University) ;
  • Ho, Yo-Seung (Department of Textile Engineering, Chonbuk National University) ;
  • Kim, Hak-Yong (Department of Textile Engineering, Chonbuk National University)
  • Published : 2004.06.01

Abstract

In this study, we evaluated the effect of the molecular weight of the polymer on electrospun poly(ethylene terephthalate) (PET) nonwovens, and their mechanical properties as a function of the linear velocity of drum surface. Polymer solutions and electrospun PET nonwovens were characterized by means of viscometer, tensiometer, scanning electron microscope(SEM), wide angle X-ray diffraction measurement (WAXD) and universal testing machine (UTM). By keeping the uniform solution viscosity, regardless of molecular weight differences, electrospun PET nonwovens with similar average diameter could be obtained. In addition, the mechanical properties of the electrospun PET nonwovens were strongly dependent on the linear velocity of drum surface. From the results of the WAXD scan, it was found that the polymer took on a particular molecular orientation when the linear velocity of drum surface was increased. The peaks became more definite and apparent, evolving from an amorphous pattern at 0 m/min to peaks and signifying the presence of crystallinity at 45 m/min.

Keywords

References

  1. J. Doshi and D. H. Reneker, J. Electrostat., 35, 151 (1995) https://doi.org/10.1016/0304-3886(95)00041-8
  2. J. M. Deitzel, W. Kosik, S. H. Mcknight, J. M. Desimone, and S. Crette, Polymer, 43, 1025 (2002) https://doi.org/10.1016/S0032-3861(01)00594-8
  3. H. Fong, I. Chun, and D. H. Reneker, Polymer, 40, 4585 (1999) https://doi.org/10.1016/S0032-3861(99)00068-3
  4. C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, Polymer, 40, 7397 (1999) https://doi.org/10.1016/S0032-3861(98)00866-0
  5. Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, Polymer, 42, 9955 (2001) https://doi.org/10.1016/S0032-3861(01)00540-7
  6. A. F. Spivak, Y. A. Dzeninis, and D. H. Reneker, Mech. Res. Com., 27, 37 (2000) https://doi.org/10.1016/S0093-6413(00)00060-4
  7. I. D. Norris, M. M. Shaker, F. K. Ko, and A. G. Macdiarmid, Synth. Met., 114, 109 (2000) https://doi.org/10.1016/S0379-6779(00)00217-4
  8. X. Zong, K. S. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, Polymer, 43, 4403 (2002) https://doi.org/10.1016/S0032-3861(02)00275-6
  9. H. Fong, W. Liu, C. S. Wang, and R. A. Vaia, Polymer, 43, 775 (2002) https://doi.org/10.1016/S0032-3861(01)00665-6
  10. J. Y Lu, C. Norman, K. A. Abboud, and A. Ison, Inorg. Chem. Comm., 4, 459 (2001) https://doi.org/10.1016/S1387-7003(01)00248-9
  11. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Becktan, Polymer, 42, 261 (2001) https://doi.org/10.1016/S0032-3861(00)00250-0
  12. A. G. Macdiarmid, W. E. Jones, I. D. Norris, J. Gao, A. T. Johnson, J. H. Pinto, J. Hone, B. Han, F. K. Ko, H. Okuzaki, and M. Laguno, Synth. Met., 119, 27 (2001) https://doi.org/10.1016/S0379-6779(00)00597-X
  13. Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, Polymer, 42, 8163 (2001) https://doi.org/10.1016/S0032-3861(01)00336-6
  14. W. Liu, Z. Wu, and D. H. Reneker, Polym. Prepr., 41, 1193 (2000) https://doi.org/10.1016/S0032-3861(99)00250-5
  15. P. G. Llana and M. C. Boyce, Polymer, 40, 6729 (1999) https://doi.org/10.1016/S0032-3861(98)00867-2
  16. D. Salem, Polymer, 39, 7067 (1998) https://doi.org/10.1016/S0032-3861(98)00109-8
  17. S. M. Hansen in 'Nonwovens: Theory, Process, Performance, and Testing', 5th ed., pp.85-112, TAPPI PRESS, Georgia, 1993