습식화학법에 의한 수산화아파타이트/$TiO_2$ 생체용 복합분말의 제조

Preparation of hydroxyapatite/$TiO_2$ biocomposite powders by wet chemical method

  • 정항철 (조선대학교 신소재공학과) ;
  • 이종국 (조선대학교 신소재공학과)
  • 발행 : 2004.06.01

초록

본 연구에서는 우수한 생체적합성과 높은 기계적 성질을 갖는 아파타이트 생체세라믹스를 제조하기 위하여 수산화아파타이트(HA, $Ca_{10}(PO_4)_6(OH)_2/TiO_2$ 생체복합분말을 제조하였다. HA/$TiO_2$ 생체복합분말은 침전법과 졸겔법으로 각각 제조된 $TiO_2$ 분말과 수열합성법으로 제조된 HA 분말을 1:1의 무게분율로 혼합하여 제조하였다. HA/$TiO_2$ 생체복합분말은 $TiO_2$와 HA 입자의 크기와 모양에 따라 미세구조의 차이를 나타냈으며, $TiO_2$와 HA의 입자 크기가 서로 다른 복합분말의 경우, 작은 입자는 큰 입자의 표면에 둘러싸고 있었으나, $TiO_2$와 HA의 입자 크기가 비슷한 복합분말의 경우, $TiO_2$와 HA 입자가 서로 분산되어 균일한 미세구조를 가지고 있었다 균질한 미세구조를 갖는 복합분말은 소결체 제조 시 높은-소결밀도와 우수한 기계적 특성을 나타내었다.

In this work, HA/$TiO_2$ biocomposite to get high mechanical properties with biocompatibility were prepared. HA/$TiO_2$ biocomposite powders were prepared by mixing $TiO_2$ and HA powders which were synthesized through sol-gel, precipitation and hydrothermal methods. The mixing ratio was fixed at 1:1 ratio (HA/$TiO_2$, wt%). HA/$TiO_2$ biocomposite powders showed different microstructures depending on their particle size and shape. The smaller particles were coated on the surface of larger particles, whereas they were well mixed and dispersed when both $TiO_2$ and HA were nanocrystallites. HA/$TiO_2$ biocomposite powders with homogeneous microstructure showed high sintered density and good mechanical properties.

키워드

참고문헌

  1. J. Am. ceram. Soc. v.81 Bioceramics L.L.Hench https://doi.org/10.1111/j.1151-2916.1998.tb02540.x
  2. Clin. Orthop. Relat. Res. v.157 Calcium phosphate ceramic as hard tissue prosthetics M.Jarcho
  3. Science v.226 Surface active biomaterials L.L.Hench;J.Wilson https://doi.org/10.1126/science.6093253
  4. J. Mater. Sci. Mater. Med. v.6 The effect of sintering atmosphere on the chemical compatibility of hydroxyapatite and particle additives at 1200˚C A.J.Ruys;A.Brandwood;B.K.Milthorpe;M.R.Dickson;K.A.Zeigler;C.C.Sorrell https://doi.org/10.1007/BF00120274
  5. Biomaterials v.19 A forcast for the future L.L.Hench https://doi.org/10.1016/S0142-9612(98)00133-1
  6. MRS Bulletin v.8 The future of medicine: biomaterials H.R.Piehler
  7. 요업기술 v.10 no.5 생체재료의 의학 응용 김석영
  8. J. Biomed. Mater. Res. v.26 Tensile strength of the interface between hydroxyapatite and bone L.Hong;H.C.Xu;K. De Groot https://doi.org/10.1002/jbm.820260103
  9. Biomaterials v.22 Preparation and characterization of titania/hydroxyapaptite composite coatings obtained by sol-gel process E.Milella;F.Cosentino;A.Licciulli;C.Massaro https://doi.org/10.1016/S0142-9612(00)00300-8
  10. J. Am. Ceram. Soc. v.65 no.12 Formation, packing and sintering of monodisperse TiO₂ powders E.A.Barringer;H.K.Bowen
  11. J. Mater. Res. v.18 no.3 Synthesis and characterization of TiO₂Nanocrystalline powder prepared by homogeneous prcipitation using urea D.S.Seo;H.C.Jung;J.K.Lee;H.Kim https://doi.org/10.1557/JMR.2003.0074
  12. J. Phys. Chem. Solids v.64 FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique R.N.Panda;M.F.Hsieh;R.J.Chung;T.S.Chin https://doi.org/10.1016/S0022-3697(02)00257-3
  13. J. Mater. Res. v.16 no.5 Mechanochemical-hydrothermal preparation of crystalline hydroxyapatite powders at room temperature P.Shuk;W.L.Suchanek;T.Hap;R.E.Riman;E.Gulliver;M.Senna;K.S. Ten Huisen;V.F.Janas https://doi.org/10.1557/JMR.2001.0170
  14. J. Crystal Growth v.84 A calcium hydroxyapatite precipitated from an aqueous solution J.Arends;J.Christoffersen;M.R.Christoffersen;H.Eckert;B.O.Fowler;J.C.Heugfebaert;G.H.Nancollas;J.P.Yesinowski;S.J.Zawacki https://doi.org/10.1016/0022-0248(87)90284-3