VLIW g0l 33 2AEHE AT A9 Z2AM FERed 279

VLIW W&ol 3 2AEd S A%
AsAdE e ZZAA7F AE R
(Compiler Processor Trade-offs for
Dynamic Scheduling of VLIW Instructions)

NI I

(Sunghyun Jee)

2 % E =FA A3 DISVLIW(Dynamically Instruction Scheduled VLIW) ZZ2AA F2+
AaZE&EH ARE o]43le] VLIW(Very Long Instruction Word) BHo|ES FHog 2AZYT +
itk o128 F2E Y87 YsA, DISVLIW ZE4ME daxe]7)e 52AZe e 452 745
Stk VLIW H#olge] 53 2AEY, AddA7te Azt #5358 g8l Waoulo) wug w3
4 3d T AL A5yl 8% H3¢L vtk DISVLIW Z2 A4 339 Ag#e)d Zdx, o
3 WA AEH AAHEE Al)RES ©]8F o= DISVLIW Z2AA FZ71 VLIW Z2A4 A
FZo} vsled §4 & A%EE S A9

719= : ILP, VLIW, DISVLIW, 548 ~AZY, SH2AZH

Abstract This paper describes a processor architecture, named Dynamically Instruction Scheduled
VLIW (DISVLIW). The DISVLIW processor architecture is designed for dynamic scheduling VLIW
instructions using dependency information. The DISVLIW instruction format is augmented to allow
dependency bit vectors to be placed in the same VLIW word. The DISVLIW processor dynamically
schedules each instruction in long instructions using functional unit and dynamic scheduler pairs.
Features such as explicit parallelism, balanced scheduling effort, and dynamic scheduling of VLIW
instructions can be used to provide a sound frustructure for supercomputing. We simulate the DISVLIW
processor architecture and show that the DISVLIW processor performs significantly better than the
VLIW processor for a wide range of cache sizes and across numerical benchmark applications.

Key words : ILP, VLIW, DISVLIW, Dynamic instruction scheduling, Dynamic scheduler

1. INTRODUCTION simply the same as sequential code. Due to the

. unbalanced optimization between compile-time and
Recent high performance processors have depen-—

ded on Instruction Level Parallelism(ILP) to achieve
high execution speed[1-12]. ILP processors achieve

run—time parallelization, the superscalar processors
typically have a performance bottleneck from

heir high berf b . Itiok excessive run-time overhead. On the other hand,
their ormance causing multiple oper- .
. gh pe) v) € p . P the VLIW processor constructs a parallelized long
ations to execute in parallel using a combination of
" 4 hard i instruction sequence at compile-time[2-6]. There-
compiler and hardware techniques. . .
P a fore, the VLIW processor can be implemented using
The superscalar processor executes all parallel

. . .] simple hardware units, but object code is more
processing steps directly in hardware at run-time
complex since it contains groups of long instruc-
{2-4]. Therefore, the superscalar processor uses . L
lex hard . 4 the obi do i tions each of which is composed of a number of
complex hardware. units an e object c¢ S . .
D €) ode 1 instructions. The VLIW processor has performance

R T . bottlenecks due to the unoptimized large object

jsh@cefs.ac.kr code and compulsory instruction scheduling{4,6]. To

=R 20039 69 17Y balance a load between compile-time and run-time
AxgE 20033 129 30Y

280 ARAFIHEEA : ALH B ol& A 31 A A 5 5(20046)

on the above processors, Superscalar VLIW(SVLIW)
is the improving style of VLIW processor design
that tries to execute object code constructed by
removing all LNOPs from VLIW code[10,11]. The
SVLIW processor also has a performance limitation
similar to the VLIW processor due to static
scheduling and biased parallelism exploitation at
only compile time.

Another technique to overcome the VLIW per-
formance limitation problem is to allow the compiler
to exploit high ILP wusing Explicit Parallel
Instruction Computing(EPIC){7,8]. The basic EPIC
principle is that the compiler should be able to
indicate the inherent parallelism of programs expli-
citly in the instruction sequence, rather than
obliging the processor to reconstruct it from a
particular sequence of serial instructions. By mak-
ing use of powerful features to generate high-
performance code, the IA-64 architecture allows the
compiler to exploit high ILP using EPIC techniques
[7.8]
this concept is the processor architecture where the

IA-64 processor architecture implementing
compiler is responsible for efficiently exploiting the
available ILP and keeps the executions busy [(8].
Instead of the merits, the I[A-64 processor has
performance limitations due to static instruction
scheduling and the difficulty of complicated com-
piler design. In order to overcome current perfor—
mance bottlenecks in modern architectures, a pro-
cessor architecture that satisfies the following
criteria is required: (1) balanced scheduling effort
between compile time and run time, (2) dynamic
instruction scheduling, and (3) reducing the size of
object code.

This paper presents a new ILP processor archi-
tecture called Dynamically Instruction Scheduled
VLIW(DISVLIW) that achieves these goals. In the
DISVLIW processor, the
augmented to allow dependency bit vectors to be

instruction format is

placed in the same VLIW word. Dependency bit
vectors are added to the instruction format to
enable synchronization between prior and subse-
quent instructions. To schedule instructions dyna-
mically, the DISVLIW processor uses functional
unit and dynamic scheduler pairs. Every dynamic
scheduler decides to issue the next instruction to

the associated functional unit, or to stall the
functional unit due to possible resource collisions or
data dependencies among instructions per every
cycle. Such designing of the DISVLIW processor
results in four positive characteristics. First, the
DISVLIW compiler can maximize the use of current
VLIW compiler techniques to generate object code
for DISVLIW. Second, the DISVLIW processor can
get higher cache effects, high cache hit ratio or
reduced instruction fetch time, due to the reduced
object code size. Third, the DISVLIW processor can
dynamically schedule each instruction using depen-
dency information in the instruction. Fourth, the
task of finding parallelism is balanced between
compile time and run time. Such features can
reduce the total number of execution cycles of the
DISVLIW processor better than those of other ILP
processors that statically schedule long instructions.

2. THE DISVLIW ARCHITECTURE

2.1 Compiler Design for DISVLIW
The DISVLIW compiler consists
phases occurring in the order as shown in Figure
1. The DISVLIW code
generation can mainly be subdivided

of multiple
problem of optimal
into two
phases. We refer to the first phase as VLIW code
generation and to the second phase as dependency
information insertion The first phase, VLIW code
generation, contains two schedulers: the software
pipeliner for targeted cyclic regions and the global
code scheduler for all remaining regions. After the
first phase, the result is VLIW code composed by a
sequence of long instructions so that each long
instruction can be executed per clock cycle without
violating data dependences or resource constraints.
Empty instruction slots within long instruction have
to be filled with NOPs. We can maximize the use
of the VLIW compiler techniques for the first
phase. The second phase, dependency information
insertion, consists of VLIW code compactor and
dependency inserter. The VLIW code compactor
compacts the VLIW code by removing nearly all
LNOPs and NOPs frofn the generated VLIW code,
and the dependency inserter then inserts depen-—
into each instruction in the

dency information

compacted VLIW code. It is necessary to express

VLIW B #ole] 53 ~AEY

VLIW code
generation

Dependency
information
insertion

Figure 1 DISVLIW compiler phases

explicit parallelism within the DISVLIW object code
for synchronization. The result of both phases
represents the final DISVLIW code composed of
long instructions. Each long instruction has multiple
instructions that may depend on each other due to
data dependencies or resource collisions.

Figure 2 shows how to generate DISVLIW code
from the given data dependency graph. In the data
dependency graph, a node represents an instruction
Ii that equals i™ instruction and a directed edge is
annotated with data dependencies and resource
collisions between instructions. We assume that
every processor has three untyped functional units
that can execute any instruction and that a long
instruction has three instructions. At the first step,
the compiler explicits long instruction groups from
the data dependency graph. Each instruction group
is composed of instructions that are executed at the
same time. The compiler then generates VLIW
code from the long instruction groups. In the VLIW
code, unused instruction slots long
instruction have to be filled with NOPs(each NOP
is depicted with a white background). The compiler

within a

then fills available instructions into the unused

instruction slots and finally inserts dependency
information into each instruction.

DISVLIW instruction format consists of an in-
struction Ij, pre-dependency Dpre,

dependency Dpost. Iy refers to the M (=1,..N)

and post-

instruction within the i (i=1,.,M) long instruction.
Dpre

executing prior instructions that have dependencies

provides information about functional units

with Ij. Dpost provides information about functional

4

data dependency graph

P Avd o} T2 AN FERSG 281

LiL]L

—_— Lkl
Ls|1s] I

VLIW instructions

Long instruction group

DISVLIW instructions

Figure 2 Example of DISVLIW code generation

units that will execute subsequent instructions that
depend on Ij. Dpe
composed of a bit vector that has (N-1) bits. To

store the information as bit vector, the compiler

and Dpos: are individually

allocates one bit for every other functional unit. If
L (k<j i
I=i’k=1,..,n if I<i) being executed by functional unit
Fi, the bit designating Fi in the Dye is set to 1.
Otherwise, it is set to zero. Although DISVLIW
code contains dependency information composed of

depends on a prior instruction I

many bits, the processor can still achieve a reduc-
tion in object code size in comparison to the VLIW
processor[10,11].

2.2 Processor Design for DISVLIW

In order to dynamically schedule each instruction
using dependency information, the DISVLIW processor
require additional hardware units which can analyze
data dependencies and resource collisions among
instructions using the dependency information at run
time, and which manage dependency information of the
executed instructions for synchronization.

The symbolic diagram of the DISVLIW processor
architecture is shown in Figure 3. The DISVLIW
processor has FU(Functional Unit) and DS(Dynamic
Scheduler) pairs, a number of IQs(Instruction Qu-
eue) and DCs(Dependency Counter), a register file,
an instruction cache, a data cache, and a BTB
(Branch Target Buffer). Each 1Q stores an in-
struction(separated into a long instruction) in its
own tail, and individually provides an instruction
and dependency information stored in its own head
to decode unit and the associated DS. IQs are

placed in front of each FU. It seems like instruc-

282 FRIAGFB =R A=F R o8 A 31 A A 5 Z(0M6)

Decode&Scheduling

— o5 MDecode—

o/ . Fetch 7 _

=| g e = Execute]

N = Ig =S - Write Back
IR Schedule__ [pg FU

% o = Ig W= [pg<T z Register fild
g = 1R = FU

£ R | = ws @ Dd | = —l T
— iermaiod =5 (RS @‘@ = Ig Data Cache!

N, | ong instruction NN instruction

@B Dependency information

Figure 3 DISVLIW processor architecture

tions within IQ issue in order, but instructions
among IQs slip with respect to each other. Each
DC saves Dpost of executed instructions on the
associated FU. Using the DC values, each DS
dynamically decides whether to assign the next
instruction to the associated FU, or to stall the FU
due to resource collisions or data dependencies.
Dynamic scheduling allows instructions in different
IQs(i.e. different FUs) are synchronized by having
DC at each FU. If there are N FUs, then each FU
has a DC composed of N-1 counters, 1 counter for
every other FU. The processor also utilizes the
BTB structure for branch prediction[2].

2.2.1 The dynamic scheduler units.

Every DS checks for data dependencies and re-
source collisions among instructions per each cycle

check signal of D'
= do.d1...di-1.di1 ... dn-1

using both Dgre of the next instruction and counter
values in the associated DC. In Figure 4, we
assume that the DISVLIW processor has five pairs
of FU and DS. In order to dynamically schedule
instruction, each DS compares Dy of the next
instruction to counter values in the associated DC
per each cycle. If ™ bit in Dpre, Do, is set to 1,
the DS checks Ci in the corresponding location in
the DC. If C; is 0, it means that the execution of
prior dependent instruction hasn’t finished. That is,
d; returns zero. Otherwise, the execution of prior
instruction has finished. That is, d:
returns 1. In order to assign the next instruction to
the associated FU, the DS should confirm that the
execution of all prior dependent instructions is
finished (all of d; return 1).

dependent

= (D% ®C).AD'5re®Cy)... (D e ®Cict) (D pre @ Cin)... (DN e ®Ciica)

DS DS,
D,
d(0) 4 () ¢ 3
d(2)e d(l)«
di3)< d)e Q
g~ a3y~ ¥
DC, y v Vv
c,CC, G,

- DS, : the ith Dynamic Scheduler

- FU, : the ith Functional Unit

+ DC,; : the ith Dependency Counter
-C; :the ith counter

Figure 4 Dynamic scheduler units

VIIW #ole] 53 2A24E 9

The equation below represents the logic for DS;
necessary to check the dependency between in-
structions for dynamic scheduling: If check signal
is 1, the DS; assigns the next instruction to FU.
Otherwise, DSi have waited until the the data
dependencies or resource collision between instruc—
tions are solved. The operator “®” means binary
vector comparison. D' e®Ci-1 evaluates to true
(That is, 1) if both of D'y and Ciq are 0 or Ciy
is greater than D' (when D'y is set to 1). the

“

operator “+” means logic and. After assigns the
next instruction, the DS; simultaneously decrements
the counter values in corresponding location in its
DC using the set bits in given Dpe. It iSs necessary
to clear the Dust of the prior instructions from the
DC before next execution.

2.2.2 Instruction pipeline stages.

Each instruction on the DISVLIW processor is
executed in four stages as shown in Figure 3. Each
stage requires one cycle except the execution stage
that requires various execution cycles according to
an instruction type. In the Fetch (F) stage, the
fetch unit gets one long instruction from the
instruction cache each clock cycle, separates it into
instructions, and then stores each instruction to the
associated IQ. If IQ is in the full state, the fetch
unit cannot fetch the following long instruction,
which prevents the IQ from overflowing. In the
Decode/Scheduling (D/S)
analyzes the next instruction at the head of each

stage, the decode unit

1Q. Every DS simultaneously checks for data de-
pendencies and resource collisions using both Dpre
of the next instruction and counter values in the its
DC. If there are no data dependencies and resource
collisions, each DS assigns the next instruction to
the associated FU and simultaneously decrements
counter values in its DC in order to clear the Dpost
its DC. In the
Execute (EX) stage, every FU executes instruction

of the prior instructions from
and announces to other FUs that its execution will
be finished during the execution of the final cycle.
To accomplish this, the FU increments counters
the FU) in DCs in
location using set bits in the Dpost. That is, every

(indicating corresponding

FU can achieve synchronization since it decrements
counter values in its DC at D/S stage and incre-

3 AGdHY TN JERG 283
ments it at EX stage. To facilitate this, we
designed the EX stage with the ability to control
the D/S stage. Finally, in the Write Back (WB)
stage, the results of the executed instructions are
stored in the register file.

The DISVLIW processor manipulates the BTB
instruction. The BTB provides the
is decoded
and therefore enables fetching to begin after IF-
stage. The BTB provides the branch target if the
prediction is a taken direct branch (for not taken
branches the target simply is PC (Program Coun-—
ter) +1). The DISVLIW processor duplicates the
of all DCs and the
temporary storag as soon as a prediction is taken.
Then the DISVLIW processor has updated the
in the

temporary storage according to result values of the

for branch
answer before the cuwrrent instruction

values register files in

values of DCs and the register files
executed instructions. When the predicate is true,
The DISVLIW: processor duplicates the values of
DCs and the register files in the temporary storage
into original DCs and register files. Otherwise, the
DISVLIW processor clears the temporary storage
and also removes the instructions of all IQs since
the instructions were fetched after mispredicted
instructions. Finally, the processor updates the
branch information in BTB according to result of
the prediction.

2.3 Dynamic scheduling strategies

Figure 5 shows dynamic execution examples of
the DISVLIW code. We assume that every pro-
cessor has three untyped functional units that can
execute any instruction and a long instruction has
three instructions. The DISVLIW compiler gener-
ates the DISVLIW code from the given simple
assembly code as shown in Figure 5a). From the
DISVLIW code of Figure 5(b),

instruction sub.d within the 2™ long instruction

we know that

depends on previous instruction lwcl executed by
FU,; since the first bit in Dp. is set to 1. We also
know that sub.d also has dependent relations with
addd executed by FU;
because the first bit in Dpost is set to 1. Figure 5(c)

following instruction
shows the changes of DC values according to the
execution of DISVLIW code in Figure 5(b). FUp
first executes instruction lwcl since Dpre of lwel is

284 HEAGI =R Al2E F o2) 31 H A 5 E(0M6)

twel §f6, $f1,

sub.d $15, fo, $f10

add.d$f7, 16, $fd4

add.d%f& f5, $6

mul d$f10, $f7, $fll

swel $68, $8, 252
(@)

FU, FU, FU,

el 11/ 10 sub.d 10/ 10 add.d 00
10 add.d 10/ 10 swel 00/ 01 mul.d 00
/ : division mark
(b)
o FU, FU, FU,

steps
1 @:‘ =~ Apnounce Doy

~

w

0 olt
i]e add.d
\\‘

tofijo .- Teav

:
§ - |wer ojo
&~ sub.d addd olojofo
T v |addd mui.d {0 Jo olo
‘ »~ o] 010

©

Figure 5 Example of dynamic

00, and simultaneously increments the first counters
(indicating FUp) in the DC; and DC; because Dpost
of addu is 11. Then, FU; and FU; individually
check Dpe of instruction sub.d, addd and the
counter values in its DC; and DCe. If both of them
are greater than 0, FU; and FU: simultaneously
begin the execution of lwcl. Then, FU; and FU:
simultaneously decrements the first counter value in
its DC: and DC; using set bits in Dpr It is
necessary to clear Dpose of lwel from each DC
before the execution of FU; and FUz Then Figure
5(d) demonstrates the execution steps of instruc-
tions in the DISVLIW code.

The main insight of this example is that in the
DISVLIW processor each instruction within a given
long instruction is dynamically processed. There-
fore, the DISVLIW processor decreases the waiting
time to process a given set of long instructions in
comparison to other processors. But the VLIW or the
SVLIW processor does not allow the next long
instruction to enter into the execution stage until
functional units have finished executing all instruc-
tions within the scheduled long instructionl3,6, 9-11].

3. EXPERIMENT METHODOLOGY

The performance of the DISVLIW processor was

accurately analyzed using a simulator testbed.

mul.d
) ﬂ

@

scheduling DISVLIW instructions

Using a simulator testbed, we measured the total
number of execution cycles for various numerical
benchmark applications on the VLIW, the SVLIW,
the DISVLIW processor architectures. The simu-
lator starts with the MIPS assembler, a Mipspro
C++ compiler using optimization flag -O and ass-
-S, generating MIPS
assembly code by compiling a C-language bench-

embly code generation flag

mark applications. Next, the macro expander inputs
the MIPS assembly code while simultaneously
expanding macros into static instructions. Macro
means a dynamic instruction that consists of a lot
of static instructions. The Macro expander then
passes the expanded assembly code to each
parallelizer. Three parallelizers, each of which is
associated with a unique processor, are designed
with the ability to exploit ILP across basic blocks
using compile techniques such as register renaming,
branch brediction, invariant code motion from loops,
common subexpression elimination, function inlining,
and loop unrolling[2,3,6,9].

Generally, the VLIW's effectiveness depends on
how good the compiler is: the VLIW processor
using a compiler with higher ILP will produce
better performance, and will get higher cache hit
rates because of the reduced object code size.
However, the DISVLIW processor accomplishes this

VLIW 3@0l9] 53 A2 S A Aded Z2AM% dxxg 285

same goal since it constructs object code using the
VLIW code. From now on, VLIW¢, VLIWs, and
VLIWpis individually mean VLIW, SVLIW, and
DISVLIW code, respectively. The parallelizers then
use the MIPS code to generate parallelized code for

its processor simulator and then translate this’

parallelized code into object code.

For these experiments, processor speedups are

calculated by dividing the total number of execution
cycles of the VLIW processor by the total number
of cycles of the DISVLIW or the SVLIW processor.
In the Table 1, the fixed parameters and the
variable parameters are also shown. Except when
stated otherwise, the default values were used in
the simulations.

For these experiments, processor speedups are
calculated by dividing the total number of execution
cycles of the VLIW processor by the total number of
cycles of the DISVLIW or the SVLIW processor.
Figure 6 provides the benchmark applications and
the proportion of I/F(Integer
Floating—point instructions) of each benchmark app-

instructions and

lication. These applications all use double precision.
The proportion of I/F is an important factor to
compare what processor architecture is effective
according to changes in the proportion of I/F. By the
proportion of I/F, we can also know the proportion
of static/dynamic instructions in this experiment
since static instruction means an integer instruction
that requires a static instruction cycle and most
floating—point instructions implies dynamic instruc-
tions that require variable instruction cycles.

Figure 7 provides the ratios of object code size
of the VLIW to both the SVLIW and DISVLIW
processors for each benchmark. In this experiment,
we chose numerical benchmarks that have a high

& egerirsns B Fodrgoditinsing

shhlil

1IVERMRE W WHEISKNE AINNAK
Benchrmarks

Percentage (%)
czBubBvadB8E

Figure 6 Ratios of integer/floating-point instructions

kil

LIVERMORE MM WHEISTONE CLINPACK. wo
Banchrmarks

Figure 7 Relative ratios of object code size

proportion of floating-point instructions. This choice
was appropriate because the DISVLIW processor is
more effective given dynamic instruction scheduling
and reduced object code size. Even though VLIWpis
contains many bits of dependency
indicates that VLIWpis
smaller than VLIW, and is almost the same size as
VLIW,.

information,

Figure 7 averages 45%

4. EXPERIMENTS

Figure 8 illustrates the impact of cache size on
speedups of the DISVLIW processor with respect
to both the SVLIW and VLIW processors. We
varied the instruction cache size from 8k bytes to

32k bytes to compare performance according to

Table 1 Input Parameters

Fixed Parameters Variable Parameters
Processor pipeline Four-stage(F,D.EX, WB)) . 2/2
Decoded instruction size 4 bytes A numt.)er of 1 ntege‘r unit
. \ . / floating-point unit
integer instruction latency 1 cycle
Floating point instruction latency 1~32 cycle next long instruction miss | 4 cycle
Data cache size Perfect(no miss penalty) penalty
cache mapping method Direct mapped Instruction cache size 16k bytes
cache replacement policy LRU(Least Recently Used)

286 ARAGIHNE=EA AL R o]& A 31 A A 5 F(0M46)

changes in cache size. The speedups of the
DISVLIW and the SVLIW processors were mea-
sured relative to the VLIW processor regardless of
cache size. In this experiment, we also reduced the
number of loop iterations in each benchmark to
reduce simulation duration. These results indicate
that the DISVLIW processor is faster than the
SVLIW processor regardless of both benchmark
applications and cache size. This is due to the
DISVLIW's unique instruction scheduling strategies.
Another factor is high cache hit ratio due to the
DISVLIW’s reduced which
decreases average fetch cycles and also reduces

object code size,

cache misses, as shown in Figure 7. Figure 8 also
indicates that larger cache sizes result in smaller
speedup differences among the VLIW, the SVLIW,
and DISVLIW processors.
the VLIW’'s performance is slower due to higher
cache miss rates. Unlike the VLIW, the DISVLIW's
performance is not as sensitive to cache size due to

At smaller cache sizes,

its smaller object code compare with VLIW’s object
code. But as cache size increases, performance
difference decreases and the VLIW’s performance
approaches that of the DISVLIW. For example, the
DISVLIW’s performance is 20% higher than that of

138

pendep
833

o.80

LIVERMORE MM WHESTONE CLINPACK

@

T Lup

LIVERMORE MM WHESTONE CLINPACK [Lep

®)

110 [3

103 ©

) VLI,

100 s
DVLIWs

LIVERMORE MM WHESTONE CLINPACK FFT Lup

Benchmarks

©
Figure 8 Comparison of speedup according to chan-
(a) cache size=8k
bytes, (b) cache size=16kbytes, (c) cache
size=32kbytes

ges in Cache Sizes;

the VLIW processor on the experiment of LIVER-
MORE benchmark in 8kbyte cache size. The
DISVLIW's performance is 16% higher than that of the
VLIW processor on the same benchmark in 32Zkbyte
cache size. As cache size increases, performance
difference slowly decreases. Yet,
perfect cache, the DISVLIW is still faster than the
VLIW's because of dynamic scheduling strategies.
Figure 9 shows the speedup of the DISVLIW
processor over the VLIW(or the SVLIW) processor

even assuming

using different scheduling strategies. In order to
evaluate scheduling performance only, we ignore
cache effects such as cache miss rates. We assume
that an instruction cache size is perfect(no miss
penalty). In this experiment, we reduced the num-
ber of loop iterations in each benchmark application
to reduce simulation duration. Figure 9 illustrates
that even though we assume a cache with a zero
miss rate, the DISVLIW's performance is still
99%-15% higher than that of the VLIW processor
regardless of benchmark application. We have the
DISVLIW’s scheduling strategies to thank for this
speedup. This scheduling decreases the waiting
time to process a set of long instructions when
compared to the VLIW and SVLIW processors. By
contrast, the VLIW and the SVLIW processor can’t
execute pending long instructions until the
execution of all instructions in the previous long
the SVLIW
processor shows same performance when compared
to the VLIW processor.

instruction finishes. In Figure 9,

1.20 or VLIW W VLW

I—I VLIW,

1.18
1.10
§ 108
1.00
0.95

0.90
LIVERMORE MM

WHETSTONE CLINPACK FFT LUD

Benchmarks
Figure 9 Comparison of speedup according to diff-
erent scheduling strategies

5. Conclusion

This paper describes a new ILP processor archi-
tecture referred to as Dynamically Instruction
Scheduled VLIW (DISVLIW). The DISVLIW pro-
cessor is a hybrid architecture that has inherited

VLIW B #0je 53 2AEHS A

features as ILP exploitation at compile-time of the
VLIW processor and dynamic scheduling at run-—
time of the superscalar processor. The experimental
evaluations presented in this paper have shown that
the DISVLIW processor achieves a high speedup
over the VLIW and the SVLIW processors for a
wide range of cache sizes and across various

numerical benchmark applications. These perfor—

mance gains of the DISVLIW processor result from
dynamic instruction scheduling and size reduction
of object code. The DISVLIW processor architec-

ture opens several new avenues of research.

Optimization of dependency information within
object code, DISVLIW compilers, and scalability of

functional units in the system are just a few

examples that will be investigated in future work.

References

[1] Ken Sakamura, ’2lst-century microprocessors,’
IEEE Micro, pp.10~11, July/Aug 2000.

[2] Roger Espasa and Mateo Valero, "Exploiting
instruction-and data-level parallelism,” IEEE Micro,
Vol. 17, No. 5, Sept 1997.

[3] Kevin W, Rudd and Michael J. Flynn, "Instruc-
tion-level parallel processors-dynamic and static
scheduling tradeoffs,” Proc. The Second AIZU
International Symposium on Parallel Algorithms/
Architecture Synthesis., pp. 74~80, March 1997.

[4] Shusuke Okamoto and Masahirc Sowa, "Hybrid
processor based on VLIW and PN-Superscalar,”
Proc. DPTA’96 International Conference.,, pp. 62
3~632, 1996.

[5] Susan J. Eggers, Joel S. Emer, Henry M. Levy,
and Jack L. Lo, "Simultaneous multithreading,”
IEEE Micro, Vol. 17, No. 5, Sep 1997.

[6] A. F. de Souza and P. Rounce, "Dynamically
Scheduling VLIW instructions,” Journal of Parallel
and Distributed Computing, pp. 1480~1511, 2000.

[7] Intel, IA-64 Architecture Software Developer's
Manual, Volume 1:IA-64 Application Architecture,
Revision 1.1, July 2000.

[8] Intel, Itanium Processor Microarchitecture Refer-
ence for Software Optimization, Aug. 2000.

[9] P. Faraboschi, J.A. Fisher, and C. Young,
"Instruction Scheduling for Instruction Level
Parallel Processors,” Proceedings of the IEEE
Microprocessor Architecture&Compiler Technology,
Vol. &, No. 11, pp. 1638~1659, Nov 2001.

[10] Sunghyun Jee and Kannappan Palaniappan,
"Performance Evaluation For a Compressed-VLIW
Processor,” the 17th ACM Symposium on Applied
Computing, March 2002.

3 Fudel) T2 AN FIEG 287

[11] Sunghyun Jee and Kannappan Palaniappan,
"Compiler Processor Tradeoffs for DISVLIW
Architectures,” the 6th Workshop on Interaction
between Compilers and Computer Architectures,
IEEE CS Press, May 2002.

[12] Michael J. Bass and Clayton M. Christensen, "The
Future of the Microprocessor Business,” IEEE

SPECTRUM, pp. 34~39, Apr 2002.

A% 4

19999 3€~3AA WA FHFEHGHE
A2 AAF 20023 3¥€-~20039 24
nFe] FPosw AT E(University
of Missouri(U.S.A)). 20013 1¥~2002
A 349 vF2] FYPL(University of
Missouri(U.S.A)) #ALE d5¢34A £
H. 19963 39~200009 2€ 503t HAA)E} o)g)
wpalelhg) HE. 19939 39 ~1995d 29 2 EUEm AxA)
Aatal o}dHAAEEY) HE 1088 29 ~19939 29 E84)
shit ARpAILIEE o B ERALete] HE

