An Animation Speed-independent Collision Detection Algorithm

애니메이션 속도에 무관한 충돌 탐지 알고리즘

  • 김형석 (동의대학교 멀티미디어공학과)
  • Published : 2004.04.01

Abstract

This paper presents an efficient collision detection algorithm the performance of which is independent of animation speed. Most of the previous collision detection algorithms are incremental and discrete methods, which find out the neighborhood of the extreme vertex at the previous time instance in order to get an extreme vertex at each time instance. However, if an object collides with another one with a high torque, then the angular speed becomes faster. Hence, the candidate by the incremental algorithms may be farther from the real extreme vertex at this time instance. Therefore, the worst time complexity nay be $O(n^2)$, where n is the number of faces. Moreover, the total time complexity of incremental algorithms is dependent on the time step size of animation because a smaller time step yields more frequent evaluation of Euclidean distance. In this paper, we propose a new method to overcome these drawbacks. We construct a spherical extreme vertex diagram on Gauss Sphere, which has geometric properties, and then generate the distance function of a polyhedron and a plane by using this diagram. In order to efficiently compute the exact collision time, we apply the interval Newton method to the distance function.

본 논문에서는 애니메이션 속도에 무관한 충돌 탐지 알고리즘을 제안한다. 현재까지 개발된 대부분의 충들 탐지 알고리즘들은 점진적(incremental) 알고리즘들로서, 현 시점에서의 가까운 점(근점)을 찾기 위하여 이전 시점의 근점 주위를 먼저 찾는다. 그런데 만일 움직이는 물체가 충돌 반응에 의해서 큰 토크를 받게 된다면 회전 속도가 증가하게 되어, 다음 시점에서의 실제 근점은 현 시점에서의 근점과는 매우 동떨어져 있어 엉뚱한 위치에서 근점을 찾게 되는 단점을 가진다. 그러므로, 최악의 경우에는 각 시점에서 $O(n^2)$, 시간이 소요될 수 있다. 또한 애니메이션 속도에 따라 이러한 점진적 계산 회수가 변하게 되어 전체적인 알고리즘의 소요 시간이 변하게 되는 단점을 가지고 있다. 본 논문에서는 이러한 문제점을 근본적으로 해결하고자 새로운 방법을 제안하고자 한다. 먼저, 기하학 특성을 내포하는 구면 근점 다이아그램을 생성하고, 이를 이용하여 두 물체간의 단일 거리 함수를 생성한다. 충돌 시점을 효율적으로 찾기 위해서 구간 뉴튼 방법을 거리함수에 적용한다.

Keywords

References

  1. James E. Bobrow, 'A Direct Minimization Approach for Obtaining the distance between Convex Polyheda,' The International Journal of Robotics Research, Vol. 8, No.3, pp. 65-76, 1989 https://doi.org/10.1177/027836498900800304
  2. Ming C. Lin and John F. Canny, 'A New Fast Algorithm for Collision Detection,' Proceed of Computer Animation, pp. 43-55, 1993
  3. F. Dai, 'Collision-Free Motion of an Articulated Kinematic Chain in a Dynamic Environment,' IEEE Computer Graphics and Applications, Vol. 9, No.1, pp. 70-74, 1989 https://doi.org/10.1109/38.20335
  4. M. Herman, 'Fast three-dimensional collision-free motion planning,' Proceed if IEEE International Conference on Robotics and Automation 2, pp. 1056-1063 (1986)
  5. A. Pentland, 'Computational Complexity versus Simulated Environment,' SIGGRAPH '93, pp. 185-192 (1990)
  6. Miguel A. Otaduy and Ming C. Lin, 'CLODs ; Dual Hierarchies for Multiresolution Collision Detection,' Eurographics Symposium on Geometry Processing, 2003
  7. H. Edelsbrunner, Algorithms in Computational Geometry, Springer-Verlag, 1987
  8. Ming C. Lin, Efficient Collision Detection for Animation and Robotics, PhD thesis, Univ. of California, Berkeley, 1993
  9. Ming C. Lin and John F. Canny, 'A Fast Algorithm for Incremental Distance Calculation,' Proceed if IEEE International Conference on Robotics and Automation, pp. 1008-1014 (1991) https://doi.org/10.1109/ROBOT.1991.131723
  10. Madhav K. Ponamgi and Dinesh Manocha and Ming C. Lin, 'Incremental Algorithms for Collision Detection Between Polygonal Models,' IEEE Transaction on Visualization and Computer Graphics, Vol. 3, No.1, pp. 51-64 (1997) https://doi.org/10.1109/2945.582346
  11. David. Baraff, 'Interactive Simulation of Solid Rigid Bodies,' IEEE Computer Graphics and Application, (May), pp, 63-75 (1995) https://doi.org/10.1109/38.376615
  12. Manfredo P. do Carmo, Differential Geometry if Curves and Surfaces, Prentice-Hall, New Jersey, 1976
  13. Hyoung Seok Kim, Collision Detection Using Spherical Voronoi Diagrams, Ph. D. Thesis, KAIST, 1998
  14. Hyoung Seok Kim, Hong Oh kim, and Sung Yang Shin, 'An Efficient Algorithm for Determining the Extreme Vertices of a Moving 3D Convex with Respect to a Plane,' Journal if Computers and Mathematics with Applications, Vol. 36, No.3, pp. 55-61 (1998) https://doi.org/10.1016/S0898-1221(98)00128-X
  15. Hyoung Seok Kim, 'A Sequence of the Extreme Vertices of a Moving Regular Polyhedron Using Spherical Voronoi Diagram,' Journal of Korea Multimedia Society, Vol. 3, No.3, pp. 298-308 (2000)
  16. Hyoung Seok Kim, 'A Linear-time Algorithm for Computing the Spherical Voronoi Diagram of Unit Normal Vectors of a Convex Polyhedron,' Journal if KISS: Computer Systems and Theory, Vol. 27, No. 10, pp. 835-839 (2000)
  17. Ramon E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, 1966
  18. Ketan Mulmuley, Computational Geometry: An Introduction Through Randomized Algorithms, Prentice-Hall, New Jersey, 1994
  19. Leo. J. Guibas and Jorge Stolfi and Kenneth K.L. Clarkson, 'Solving Related Two- and Three-Dimensional Linear Programming Problems in Logarithmic Time,' Theoretical Computer Science, Vol. 49, pp. 81-84 (1987) https://doi.org/10.1016/0304-3975(87)90101-0
  20. J. L. Junkins and J. D. Turner, 'Optimal Continuous Torque Attitide Maneuvers,' J. Guidance and. Control, Vol. 3, No.3, pp, 210-217 (1980) https://doi.org/10.2514/3.55974
  21. W. R. Hamilton, Elements of Quatemions (Volume I, II), Chelsea Publishing Company, 1969
  22. J. L. Junkins and J. D. Turner, Optimal Spacecraft Rotational Maneuvers, Elsevier, 1986
  23. Myoung Jun Kim and Myung Soo Kim and Sung Yong Shin, 'A general construction scheme for unit quaternion curves with simple high order derivatives,' SIGGRAPH, pp. 369-376 (1995) https://doi.org/10.1145/218380.218486