&3 dolgt HEolA a&HY EWHA A

Z3 dlojel ALolA] HEZF < EANYL A
(Efficient Transaction Processing in Hybrid Data Delivery)

N
ol & &

(SangKeun Lee)

2 o T AR MulzdN FH-710 BREsA2EE dojg 8 et 42 B B 9
FetoldEdA FEE FAA7E ¢ ARHY sigolrt. aFAW, HojehHlo]x o) & FfdE
E-710te] (ZEloldENA MHES]) dAdS F4i-7e] BREAAES FEE oj2ut EF HiolE
Age] fEl¥ + Utk ¥ £EL &F F4-71 HojE ER=s2E @74 AANHANRE 71497
v 248 Ae e EF ol bl HEstm, AETolEE B 2 s BAUh AlEgel
A Ase F, 71499-71 ERYA AME] el € F4 wolet st ohet £ Holg AF
M= ¢ 45E dEide ¢ + It

FIHE : o)F FFE, T4 AR vl EF dloje A, AL, EJAE A

Abstract Push-based broadcasting in wireless information services is a very effective technique
to disseminate information to a massive number of clients when the number of data items is small.
When the database is large, however, it may be beneficial to integrate a pull-based (client-to—server)
backchannel with the push-based broadcast approach, resulting in a hybrid data delivery. In this paper,
we analyze the performance behavior of a predeclaration-based transaction processing, which was
originally devised for a push-based data broadcast, in the hybrid data delivery through an extensive
simulation. Our results show that the use of predeclaration-based transaction processing can provide
significant performance improvement not only in a pure push data delivery, but also in a hybrid data
delivery.

Key words : Mobile Computing, Wireless Information Services, Hybrid Data Delivery, Caching,

297

Transaction Processing

1. Introduction

With the advent of third generation wireless
infrastructure and the rapid growth of wireless
communication technology such as Bluetooth and
IEEE &02.11, mobile computing becomes possible.
People with battery powered mobile devices can
access various kinds of services at any time any
place. However, existing wireless services are
limited by the constraints of mobile environments
such as narrow bandwidth, frequent disconnections,
and limitations of the battery technology. Thus,
mechanisms to efficiently transmit information from

the server to a massive number of clients have

- B dFe addidta SEdTeld 93t £PEAS

t 39 meidigtn FFE g ne
yalphy@korea.ac.kr
=25 0 2003 9¥ 229

ArgE 2004 29 17d

recetved considerable attention [1-3].

In recent years, broadcasting has been shown to
be an effective data dissemination technique for
wireless networks in many studies [1,2]. Parti-
cularly, there were a lot of research efforts in
periodic push model where the server repetitively
disseminates information without explicit request.
One interest in the model is to deal with the
problem of designing a broadcast schedule such
that the average latency is minimized. The app-
roach is to determine the broadcast frequency of
each data item in accordance with users access
frequency of the data, and then to distribute the
broadcast slots of each data item as uniformly as
possible. An approach to reduce the latency to a
desirable level for each user is to make use of

local storage. Caching frequently accessed data

298 R =7 A dojehulo]& A 31 # A 3 Z(2046)

items at the client side is an effective technique to
improve performance in mobile computing systems.
With caching, the data access latency is reduced
since some data access requests can be satisfied
from the local cache, thereby obviating the need for
data transmission over the scarce wireless links.

In a periodic push model, however, average
waiting time per data operation highly depends on
the length of a broadcast cycle and different access
patterns among clients may deteriorate the access
time considerably [1]. For example, the number of
data items in the database is large, the broadcast
cycle may be long. Hence, clients have to wait for
a long time before getting the required data. In this
case, the clients are preferably willing to send a
data request to the server explicitly through uplink
channel to obtain optimal response time and to
improve overall throughput [4]. We call such a
broadcast-based data delivery supporting uplink
channel as a hybrid data delivery. Our main
concern in this paper is, as is the case with our
early work [5], to handle the problem of preserving
the consistency of mobile read-only transactions in
a hybrid data delivery.

In a push-based broadcast environment, providing
consistent data values to transactions has been
identified as one of main issues in designing
[6-8], and
consistent and current data access despite updates

mechanisms several approaches to
in wireless data broadcast have been proposed in
the literature[(9-15]. The validation protocols with
dynamic adjustment of serialization order of trans-
actions are proposed in [10, 11]. BUC (Broadcasted
and Updated Cycles) control information for each
item in wireless data broadcast is deployed in [9].
A control information matrix and a serialization
graph testing are used for concurrency checking in
[14] and [13] respectively. A simple invalidation
method is presented in [12], where an invalidation
report is broadcasted at pre-specified points (e.g. at
the beginning of each broadcast cycle) during the
broadcast. To increase the number of read-only
transactions that are successfully processed despite
updates at the server, multiversion schemes are
employed in [12]. There, old versions of data items
are temporarily retained in a broadcast so that the

number of aborted transactions could be reduced.
The major problem, amongst others, with all the
previous works are that the commit probability
and/or response time of a wireless read-only
transaction suffers a great deal when the size of
large or data items are highly
updated. This is attributed to an inherent property

of a wireless data broadcast that data can only be

transaction is

accessed strictly sequential.

In our previous work [16, 17], a predeclaration—
based query optimization was explored for efficient
processing of wireless read-only transactions in a
push-based broadcast. It is observed that, in a
push-based data delivery, predeclaration in trans-
action processing has a novel property that each
read-only transaction can be processed successfully
with a bounded worst-case response time. This is
because, a client retrieves data items in the order
they are broadcasted, rather than the order they are
requested. Here, clients are just tuning in broadcast
channel and waiting for the data of interests. As
mentioned before, however, it is sometimes nece-
ssary for clients to send messages to the server
and a hybrid data delivery can be a good
alternative model to deal with new requirements.
Therefore, in this paper, we modify a prede-
claration-based transaction processing [16] in order
to apply it to the hybrid data delivery environment,
and in turn, study its performance behavior. The
proposed methods are particularly intended for
applications like the online auction application,
where the size of the broadcasted data is relatively
small, but the number of clients is very large.
Extensive experiments are provided and used to
evaluate our methodology. Compared to other
schemes, our solution improves the performance
significantly.

The remainder of this paper is organized as
follows. Section 2 describes our mobile computing
system model. Section 3 introduces the proposed
transaction processing algorithms. Section 4 studies
the performance of the proposed algorithms. The

conclusion of the paper is in Section 5.

2. System Model

In this section, we briefly describe the model of

EF dolel AFelA L4 EIHRA A 299

our mobile computing system. The system consists
of a data server and a number of mobile clients
connected to the server through a low bandwidth
wireless network. A server maintains the consis-
tency of a database and reflects refreshment by
update transactions. The correctness criterion in
transaction processing adopted in this paper is
serializability [18]. The server also plays a role of
For effi-
ciency, data items in the database are divided into
Push_Data and Pull_Data. The server determines
that data items in Push_Data are considered to be

servicing clients information demands.

accessed more frequently than those in Pull_Data
and thus it disseminates only Push_Data periodi~
cally and repetitively. Data in Pull Data are
serviced by broadcasting in an on-demand mode. In
case of a pure-push broadcast, all data items are
contained in Push_Data.

Each data item in Push_Data appears once during
one broadcast cycle (uniform broadcast [11). We
assume that the content of the broadcasted at each
cycle is guaranteed to be consistent. That is, the
values of data items that are broadcast during each
cycle correspond to the state of the database at the
beginning of the cycle, i.e. the values produced by
all transactions that have been committed by the
beginning of the cycle. Consistent with the rule, the
Pull_Data at the end of a

broadcast cycle for collected requests from clients

server broadcasts

during the last cycle. Besides, some useful infor—
mation such as the set of data identifiers updated
during the last cycle is delivered as a form of an
invalidation report (IR) at the beginning of each
cycle (and before every item in Push_Data is
broadcasted).

Mobile clients do their jobs by utilizing their
mobile terminals. When a data operation of a
transaction is submitted, a way of acquiring data
value is determined according to the data type. If
the data item is an element of Push_Data, clients
just tune in broadcast channel;, in this case, they
are passive listeners who make no request and
such repetition allows the broadcast medium to be
perceived as a special memory space. This makes
broadcasting an attractive solution for large scale

data dissemination. However, its limitation is that it

can be accessed only sequentially and clients have
to wait for the data of interest to appear on the
channel. A direct consequence is that access
latency depends on the volume of Push_Data, which
has to be fairly small. If the data is not scheduled
to be transferred through the channel (ie. it is an
element of Pull_Data), this is a standard client-
server architecture where the data requests are
explicitly made to the server. The average data
access time depends on the aggregate workloads as
well as the network load, but not highly on the
size of Pull_Data.

It is evident that with too little broadcasting, the
volume of requests at the server increase beyond
its capacity, making service practically impossible
[19]. However, in this paper, we do not touch the
issues related with scheduling what data to
disseminate. We just assume that Push_Data and
Pull_Data are already determined and the access

frequencies are not changed.

3. Predeclaration-based Transaction Processing

Three predeclaration-based transaction processing
methods in the work [16], P (Predeclaration), PA
(Predeclaration with Autoprefetching) and PA® (PA/
Asynchronous), need to be slightly modified here to
work in the hybrid data delivery. The central idea
is to employ predeclaration of readset in order to
minimize the number of different broadcast cycles
from which transactions read data. Two assump-
tions made in our proposed methods are listed
below.

*Each data item in Push_Data, which is broad-
casted periodically, has the following information
as a minimum; < @ primary key, an offset to the
start of the next broadcast, the value of data
record >. Here, an offset to the start of the next
broadcast is necessary to guide a client to tune
in at the beginning of the next broadcast at any
point within a broadcast cycle, which will be
further explained at Section 3.1 and 3.2.
* The information about the readset of a trans—
action is available at the beginning of transaction
processing. We expect this can be easily done
either by requiring a transaction to explicitly

declare its readset or by using preprocessor on a

300 AR5 =EA: doleuo)lx A 31 A Al 3 T(AM6)

client, e.g. to identify all the items appearing on a
transaction program before being submitted to the
client system (note that additional reads may be
included to the predeclared readset due to control
IF-THEN-ELSE and
SWITCH ones in a transaction program).

statements such as

We now define the predeclared readset of a
transaction T, denoted by Pre_RS, to be a set of
data items that T reads potentially. For all me-
thods, each client processes T in three phases: (1)
Preparation phase. it gets Pre_RS, (2) Acquisition
phase: it acquires data items belonging to Pre_RS
from the periodic broadcast (for Push_Data), the
server in an on-demand mode (for Pull_Data), or
its local cache. During this phase, a client
additionally maintains a set Acquire(T) of all data
items that it has acquired so far, and (3) Delivery
phase:

according to the order in which the transaction

it delivers data items to its transaction
requires data.

3.1 Method P

Since the content of the broadcast at each cycle
is guaranteed to be consistent, the execution of
each read-only transaction is clearly serializable if
a client can fetch all data items within a single
broadcast cycle. Since, however, a transaction is
expected to be started at some point within a
broadcast cycle, its acquisition phase may therefore
be across more than one broadcast cycle. To
remedy this problem, in P, a client starts the
acquisition phase synchronously, ie. at the
beginning of the next broadcast cycle. Since all
data items for its transaction are already identified,
the client is likely to complete the acquisition phase
within a single broadcast cycle. Only when the
pull-requested items are not served within the
broadcast cycle, which is due to server saturation,
is restarted from scratch.

More specifically, a client processes its transaction

the acquisition phase

T; according to Figure 1.

Theorem 1. P generates serializable execution of
read-only transactions if the server broadcasts only
serializable data values in each broadcast cycle.

Proof) It is straightforward from the fact that
the data set read by each transaction is a subset of
a single broadcast. ‘ O

1. On receiving Begin(T) {
get Pre_RS(T:) by using preprocessor;
send requests for item(s) belonging to Pull_Data;
Acquire(T)) = &:
tune in at the beginning of the next broadcast cycle
}
2. While (Pre__RS(TJ) » Acquire(Ti) {
if (the current cycle ends) { /* beyond server capacity for pull requests
Acquire(T)) = &/
restart this acquisition phase from scratchi
} /% end of if
for d; in Pre_RS(T) { /» for both push and pull data
download o
put ¢; into local storage:
Acquire(T)) & di
} /% end of for
}
3. Deliver data items to 7; according to the order in which 7; requires,
and then commit 7;.

Figure 1 Algorithm of method P

The main advantage of P is that it achieves a
considerable reduction of transaction response time
in an update-intensive environment without sacri-
ficing serializability or currency of reads. In parti-
cular, each transaction is likely to be successfully
committed within two broadcast cycles even in an
extreme case where all data items in a database
This is
because the acquisition phase can be completed

are updated during a broadcast cycle.

within a broadcast cycle, if the server's queue is
not congested. The disadvantage of P is that local
storage
section, we devise two variants of P which utilize

is not fully utilized. In the following
local storage as local caches.

3.2 Methods PA and PA?

Clients can cache data items of interest locaily to
reduce access latency. Caching reduces the latency
of transactions since transactions find data of
interest in their local cache and thus need to
access the broadcast channel for a smaller number
of times. In this section, clients use their available
hard disks as local caches and caching technique is
employed in the context of transaction processing.
We therefore need to guarantee that transaction
semantics should not be violated as a result of the
creation and destruction of cached data based on
the runtime demands of clients. In our work,

transactional cache consistency can be easily
maintained if a serializable broadcast is on the air
in each broadcast cycle.

At the beginning of each broadcast cycle, a client

tunes in and reads the invalidation report. For any

&3 dolet AEolA EEHY EWNA A 301

data item d; in its local cache, if indicated as
updated one, the client marks di as “invalid” and
gets d; again from the current broadcast and puts
it into local cache. Cache management in our
scheme is therefore an invalidation combined with a
form of autoprefetching [20]. Invalidated data items
remain in cache to be autoprefetched later. In
particular, at the next appearance of the invalidated
data item in the broadcast, the client fetches its
new value and replaces the old one.

There are two choices on when to start the
acquisition phase. One is a synchronous approach
where, as is the case with P, a client fetches data
items from the beginning of the next broadcast
cycle. We call this method PA. Similar to method
P, when the pull-requested items are not served
within the broadcast cycle, which is due to server
saturation, the acquisition phase is restarted from
scratch. More specifically, PA works according to
Figure 2.

1. On receiving Begin(T:)} {
get Pre__RS(T) by using preprocessor;
send requests for itern(s) belonging to Pull_Data;
Acquire(Ti} = @,
tune in at the beginning of the next broadcast cycle:
}
2. Fetch an invalidation report:
For every item ¢; in local cache {
if (indicated as updated one) {mark d; as “invalid”; }
} /* end of for
For every “valid” item dj in local cache {
if (i € Pre_RS(TN { Acquire(Ti) & di; }
} /* end of for
White (Pre_RS(T:) = Acquire(T;)) {
if (the current cycle ends) { /* beyond server capacity for pull requests
Acquire(T) = @i
restart this acquisition phase from scratch;
} /= end of if
for d; in Pre_RS(T;) - Acquire(T} { / for both push and pull data
download dj;
put d; into local storage;
Acquire(T) = dj
} /% end of for
t
3. Deliver data items to 7; according to the order in which 7; requires,

and then commit 7;

Figure 2 Algorithm of method PA

Theorem 2. PA generates serializable execution
of read-only transactions if, in each broadcast cycle,
the server broadcasts an invalidation report which is
followed by serializable data values.

Proof) It is straightforward from the fact that
the data set read by each transaction is a subset of
a single broadcast. O

Method PA remedies the problem with method P
by utilizing a client storage as local cache, while
still supporting transactions efficiently in an update-
intensive database. Its synchronous approach, how-
ever, may incur unnecessary response time latency
to short transactions in a rarely updated database.
For example, if most of data items reside in local
cache and all missed items can be retrieved from
the current push-based broadcast, then a trans-
action would be completed within a single broad-
cast cycle in which it is initiated.

To get over the disadvantage of method PA, a
client can take an asynchronous way, ie. it fetches
data items immediately without waiting for the
next broadcast cycle. Unlike synchronous app-
roaches, the acquisition phase may span across two
different broadcasts in this case. This method is
referred to as PA”

pull-requested items are not served within the

Interestingly, in case the

latter broadcast cycle, the acquisition phase is
restarted from scratch at the beginning of the next
broadcast cycle, resulting in PA processing. The
algorithm for method PA? is shown in Figure 3.

1. On receiving Begin(T) {
get Pre_RS(T) by using preprocessor:
send requests for item(s) belonging to Pull_Data;
Acquire(T) = &
+
2. For every “valid” item d; in local cache {
if (dh & Pre RS(TY { Acquire(T)) < dii }
} /% end of for
While (Pre__RS(T:) # Acquire(T))) {
if (the latter cycle ends) { /* beyond server capacity for pull requests
Acquire(T)) = &
restart this acquisition phase from scratch
at the beginning of the next broadcast cycle; |
/% end of if
for d; in Pre_RS(T) -~ Acquire(T)) { /* for both push and puli data
download dji
put d; into local storage:
Acquire(T) = dji
if (it is time to receive an invalidation report) {
tune in and fetch an invalidation report;
for every item d; in local cache {
mark ¢ as “invalid”;
Acquire(T) = Acquire(T)) - (dy)
)} /% end of for
} /* end of if
} /¢ end of for
}
3. Deliver data items to T; according to the order in which T; requires,
and then commit 7.

Figure 3 Algorithm of method PA’

Theorem 3. PA° generates serializable execution
of read-only transactions if, in each broadcast cycle,

302 BRI =ER]

the server broadcasts an invalidation report which is
followed by serializable data values.

Proof) Let broadcastcycle: be the broadcast cycle
in which some transaction 77 completes its acquisi—
tion phase and DS; be the serializable database
state that corresponds to the broadcast cycle
broadcastcycle;. We show that the values read by
T correspond to the database state DS; by using a
contradiction. Let us assume that the value of data
item dl read by 77 differs from the value of d; at
DS;:. Then, an invalidation report should have been
broadcasted at the beginning of broadcastcycle; and
thus d; should have been invalidated, O

4. Performance Analysis

4.1 Simulation Model
In this studying the
performance behavior of our predeclaration-based

section, we aim at

transaction processing through an extensive
simulation. Figure 4 shows the simulation model,
where a single client is considered. This is partially
because the performance of a single client read-
only transaction is independent of the presence of
other clients transactions in terms of conflicts. In a
hybrid data delivery, however, the queue congestion
at the serve side can occur due to heavy uplink
requests from clients. In the experiment, however,
we do not consider the congestion problem for the
sake of simplicity (further, the server congestion

problem is not specific to ours).

Client

Requests

Queue
Figure 4 Simulation Model

The server first broadcasts an invalidation report
which is followed by all data items in Push_Data,
and then broadcasts requested data items among
Pull_Data (of course, in case of pure—push broad-

tlotetriof2 A 31 A A 3 T(20046)

cast model, all data items are contained in
Push_Data). for Push_Data is

uniform; that is, the server broadcasts each data

Broadcast model

item just once on a single wireless channel during
one cycle. All data items in a cycle are in a
consistent state. In the experiments, the access
probabilities follow a zipf distribution with a
parameter theta to model the non-uniform access;
the first data is accessed the most frequently, and
the last data is accessed the least {frequently.
UpdateRate is the number of updated data items
during the time when all NumberOfData are
broadcasted. The distribution of updates follows a
zipf distribution with a parameter theta to model
the non-uniform updates. There is a queue for
storing uplink messages at the server. When a
transaction needs a certain data in Pull_Data, the
data request is delivered to the server and en-
queued. The server serves those requests in a
FIFO mode.

A mobile transaction issues NumberOfOp ope-
rations belonging to the range of AccessRange. In
particular, predeclaration-based transactions are set

to issue %XNumberOfOp operations to account

for additional reads due to control statements in the
experiment. In the range, access probabilities also
follow a zipf distribution. To model the disagree-
ment between the access pattern of a transaction
and the update pattern in the server, the first data
item in AccessRange starts at (Offset+1)™ data.
Each client can maintain local cache which can
hold up to CacheSize data items. The cache re-
LRU
auto-prefetching and the cache data consistency is

placement policy is in conjunction with
maintained by monitoring an invalidation report, e.g.
[2]. In the experiments, the time unit is set to the
time which is needed for the server to disseminate
one data item, and we also assume that the time
unit is the same as that which is required to
execute one read operation in the client. Table 1
summarizes the parameters and the default values.
For performance evaluation in a pure push data
delivery, methods P, PA, PAZ, are compared with
Invalidation-Only (IO) method, Multiversion with
Invalidation (MI) method in [12, 13], and O-Pre

&5 dielgt dHolM 2&HA EAAA A

Table 1 Parameter Description

303

Parameter Value Meaning
NumberOfData 10,000 | the number of data items
NumberQfOp varied | the number of read operations in a transaction
Push_Data 2,000 the size of Push_Data
Pull_Bandwidth 1,000 the bandwidth allocated for data requests
UpdateRate varied | the number of updated data items during a cycle
theta(@) 0.90 zipf distribution parameter
CacheSize 200 local cache size
AccessRange whole average access range for mobile transaction
Offset 50 disagreement between access patterns
ReadTime 1 execution time for read operation time unit
IRCheckTime 3 the time for checking when receive an IR
msgTransferTime 50 the time needed to send a data request
RestartTime 10 the time between abort and restart
method in [10]. This is because these methods [—10 —e—0Prs _W-7 —a—FPA Pz]
adopt serializability as a correctness criterion for 200000
transaction processing and the system model is é’ E 160000
very similar to ours. In a hybrid data delivery, ours §§120000
and O-Pre [5] are compared in terms of response g‘é
time. /O method is a pure optimistic algorithm, and §§ 80om
a client does consistency checks based on a ;Z"E 40000
periodic invalidation report. Whenever any conflict 0 4
is found, the transaction has to be aborted and ? ° Number ;:)OperationsM ‘:

restarts after RestartTime. With MI method, de-
pending on individual update frequency, a single
cycle consists of 1 to 4 version(s) per each data
item. Thus, the length of one cycle in MI is much
longer than those of O-Pre, IO and our methods.

4.2 Experimental Resuits

The characteristics of our proposed methods are
explored quantitatively using the simulation model,
and evaluated by showing improvement of average
response time of transactions.

4.2.1 Effect of Number of Operations

Figure 5 shows the performance behavior as the
number of operations issued by a transaction is
increased in the pure push data delivery and the
hybrid data delivery, respectively. We see that the
performance behavior in Figure 5(a) is consistent
with the analysis result in [16]. For long trans-
actions (the number of issued operations are greater
than 10 in our experiment), the response time of /O
is increased rapidly. This is because a large value
NumberOfOp decreases the probability of a trans-
a transaction

action’s commitment. As a result,

(a) Pure Push Data Delivery

[—@—0PreH @8- P & PA PAZ]

Average response time
(in number of data item

S EEEEE

2
A
v
.,
v’
i
¥
Y
r

-

N
f=2]
3
=
>

Number of Operations

(b) Hybrid Data Delivery
Figure 5 Effect of Number of Operations

suffers from many restarts until it commits. MI
avoids this problem by making a client access old
versions on each broadcast, thereby increasing the
chance of a ftransaction’s commitment. We can
that

sensitive to the number of items than JO. However,

observe the performance of MI is less

the increased size of broadcast affects the response

304 AR A= E A wloletwo] A 31 A A 3 5(20046)

time negatively. This explains why MI is inferior
to IO for small operations. Method O-Pre shows
fairly good performance, compared to MI and I0.
With our P, PA, and pA? methods, as a transaction
can access data items in Push_Data in the order
they are broadcasted, resulting in a stable perfor-
mance. For example, when NumberQfQOp is 14, ours
yield the response time reduced by a factor of 10
on MI and IO methods. Among ours, PA® exhibits
only a marginal performance improvement over PA,
which in turn shows a marginal improvement over P.

Turning to the hybrid data delivery, as expected,
Figure 5(b) shows the superior performance to the
pure push data delivery. For example, when
Number(OfOp is set to 10, the average response
time is reduced by a factor of 4 with the use of
our methods. This result verifies the usefulness of
a hybrid data delivery. With our P, PA, and PA®
methods, since a transaction can access data items
in the order they are broadcasted, the average
response time is almost independent of transaction
size. Notably, we have observed that our methods
performance in a hybrid data delivery is dominated
by pulled data item(s), i.e. only a single pulled data
is hkely to make local cache, which favors fre-
quently accessed data, wuseless in terms of
transaction response time. Since items in Puil_Data
is less frequently accessed, it is unlikely for a
client to hold items in Pull_Data in local cache,
thereby waiting a long time. This implies that
cost-based caching may be beneficial in a hybrid
data delivery, which is our future work. This
explains why our three methods shows almost
same response time; caching of frequently accessed
data does not contribute to performance improve—
ment. Compared to O-PreH, when NumberOfOp is
10, ours yield the response time reduced by a
factor of 7 on O-PreH.

4.2.2 Effect of Update Rate

In this experiment, we consider the effect on the
intensity of updates (UpdateRate) at the server.
The parameter means the number of updated data
items while the server disseminates all data items
((1...NumberOfDatal).

same value for UpdateRate, data items are less

Therefore, in spite of the

frequently updated in a hybrid data delivery since

[=——Mi ——=—10 —8—0Pre P —&—PA . PAZ]
240000

Average response time
(in number of data item
JBEREE

61 3 4
100 00 500 700 900
Nurrber of Updated ltems during a Cycle

(a) Pure Push Data Delivery

[~®—OPreH —M-P —&—PA PA2|
50000
@
g
£ & o000
O x
3c 30000
82
@
g & 20000
® E
& 2 10000
>
<« &
o™ . A4
100 300 500 700 900
Number of Updated ltems during a Cycle

(b) Hybrid Data Delivery
Figure 6 Effect of Update Rate

the length of a cycle is very small.

Figure 6 shows the effect of update rate on the
performance of various methods when NumberOfOp
is set to 10. First, let us consider a pure push data
delivery. Again, we see that the performance
behavior in Figure 6(a) is consistent with the
analysis result in [16]. A higher update rate means
a higher conflict ratio, and also a higher probability
This why the

response time of IO deteriorates so rapidly. MI

of cache invalidation. explains
also degenerates as update rate increases. This is

because a higher update rate leads to larger
number of updated items in the database, resulting
in a larger broadcast size. Unlike IO, however,
with MI, a transaction can proceed and commit by
reading appropriate old versions of items which are
This
probability is the main reason why MI beats IO

on the air. difference of commitment
for high update rate (in our experiment, when
UpdateRate > 500). For a low update rate, there is
a high probability that a transaction commit

successfully even with IO. Thus, IO shows better

&5 viojel AFAA ag2A ERAL A 305

response time than MI since the former retrieves
each item more quickly than the latter. With P,
PA, and PAZ, the response time is not affected by
update rate significantly, and further, is almost
identical. This is because, in most cases, a
transaction can access data items within a single
which

serializable data values.

broadcast cycle, contains consistent,

Next, consider the case in a hybrid data deliver.
As expected, Figure 6(b) shows the superior per-
formance to the pure push data delivery. Compared
with our previous work, Figure 6(b) shows that
ours are superior to O-PreH for all range of
update rate. Since O-PreH is an optimistic algo—
rithm, the performance gets deteriorated as the
update rate is increased. Irrespective of update rate,
since the performance in a hybrid data delivery is
dominated by pulled data item(s), the use of local
caching, which prioritizes frequently accessed data,
is almost useless in terms of transaction response
time. With P, PA, and PA’, the response time is
not affected by update rate significantly, since a
transaction can access consistent, serializable data
values within a single broadcast cycle in most
cases.

5. Conclusion and Future Work

From the limited resource point of view, broad-
cast-based data delivery is especially suitable in
mobile computing environments. If the number of
data items to be broadcasted is considerable, it may
result in poor utilization of valuable resources and
low throughput.

In this paper, we have analyzed the performance
of predeclaration-based transaction processing both
in a pure push data delivery and in a hybrid data
delivery. Mobile transactions are able to efficiently
retrieve most data items in the order they are
broadcasted, rather than in the order they are
requested. Further, the role of maintaining trans—
actional consistency is fully delivered to clients. In
particular, both the introduced notion of prede-
claration and the use of explicit data requests from
clients improve the response time greatly.

Much future work remains. We plan to study the
impact of server congestion due to heavy uplink

requests in a hybrid data delivery. We also plan to
analyze the optimal value for both the volume of
Push_Data and the bandwidth

requests. Further, we would like to analyze the

of pulled data

effectiveness of cost-based caching mechanism in a

hybrid data delivery.

References

[1] S. Acharya, R. Alonso, M. Franklin, and S.
Zdonik. Broadcast disks: Data management for
asymmetric communication environments. In Pro-
ceedings of the ACM SIGMOD Conference on
Management of Data, pp.199-210, 1995.

[2] D. Barbara and T. Imielinski. Sleepers and
workaholics: Caching in mobile environments. In
Proceedings of the ACM SIGMOD Conference
on Management of Data, pp.1-12, 1994,

[3] T. Imielinski, S. Viswanathan, and B. Badrinath.
Data on air: Organization and access. IEEE Trans-
actions on Knowledge and Data Engineering,
Vol9, No.3, pp.353-372, 1997.

[4] S. Acharya, M. Franklin, and S. Zdonik. Balancing
push and pull for data broadcast. In Proceedings
of the ACM SIGMOD Conference on Manage-
ment of Data, pp.183-194, 1997.

[5]1 S. Kim, S. Lee, C.-S. Hwang, and S. Jung. O-
preh: Optimistic Transaction processing algorithm
based on pre-reordering in hybrid broadcast
environments. In Proceedings of the 10th Inter-
national Conference on Information and Know—
ledge Management, pp.5b3-555, 2001.

[6] D. Barbara, Mobile computing and databases: A
survey. IEEE Transactions on Knowledge and
Data Engineering, Vol.11, No.1, pp.108-117, 1999.

[7] T. Imielinski and R. Badrinath. Wireless mobile
computing: Challenges in data management. Com-
munications of the ACM, Vol.37, No.10, pp.18-28,
1994.

[8] K.-L. Tan and B. C. Ooi. Data Dissemination in
Wireless Computing Environments. Kluwer Aca-
demic Publishers, 2000.

[9] A. Al-Mogren and M. H. Dunham. Buc, a simple
yet efficient concurrency control technique for
mobile data broadcast environment. In Proceedings
of the 12th International Workshop on Database
and Expert Systems Applications, pp.b64-569,
2001.

[10] S. Kim, S. Lee, and C.-S. Hwang. Using reor-
dering technique for mobile transaction manage-
ment in broadcast environments. Data and
Knowledge Engineering, Vol.45, No.l, pp.79-100,
2003.

[11] E. Mok, H. V. Leong, and A. Si. Transaction

306 AR 3 =E A dlojetulo]2 A 31 E A 3 Z(20046)

processing in an asymmetric mobile environment.
In Proceedings of the Ist International Conference
on Mobile Data Access, pp.71-81, 1999.

[12] E. Pitoura and P. Chrysanthis. Exploiting versions
for handling updates in broadcast disks. In Pro-
ceedings of the 25th International Conference on
Very Large Data Bases, pp.114-125, 1999.

[13] E. Pitoura and P. Chrysanthis. Scalable processing
of read-only transactions in broadcast push. In
Proceedings of the 19th International Conference
on Distributed Computing Systems, pp.432-439,
1999.

[14)). Shanmugasundaram, A. Nithrakashyap, R.
Sivasankaran, and K. Ramamritham. Efficient
concurrency control for broadcast environments. In
Proceedings of the ACM SIGMOD Conference on
Management of Data, pp.85-96, 1999.

[15] R. Srinivasa and S. H. Son:. Quasi-consistency
and caching with broadcast disks. In Proceedings
o the 2nd International Conference on Mobile
Data Management, pp.133-144, 2001.

[16] S. Lee, C.-S. Hwang, and M. Kitsuregawa. Using
predeclaration for efficient read-only transaction
processing in wireless data broadcast. IEEE Trans-
actions on Knowledge and Data Engineering,
Vol.15, No.6, pp.1579-1583, 2003.

[171 S. Lee, M. Kitsuregawa, and C.-S. Hwang.
Efficient processing of wireless read-only trans-
actions in data broadcast. In Proc of the 12th
International Workshop on Research Issues on
Data Engineering, pp.101-111, 2002.

[18] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison Wesley, Massachusetts, 1987.

[19] K. Stathatos, N. Roussopoulos, and J. Baras.
Adaptive data broadcast in hybrid networks. In
Proceedings of the 23rd International Conference
on Very Large Data Bases, pp.326~335, 1997.

{20] S. Acharya, M. Franklin, and S. Zdonik. Dis-
seminating updates on broadcast disks. In
Proceedings of the 22nd International Conference
on Very Large Data Bases, pp.354-365, 199.

o] 2

19943 2¢ moigtm A4y,
AFE) AL EY. 199%d 29 12y
it oidry AdAEaE, AFEHT
3} A . 19993 8Y mEURm
g A, AFE) A
29, 20009 49~2001d 39 AU
2 AredTA EEdTY 20019 49-~20033 29
LGAAAREA dod7s 4947, 20039 3¢ ~3dA)
Dt FAREYgY 2agp

