JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 6, JUNE 2004(pp. 832-840)

A Jini-Based Ubiquitous Messaging System Supporting
Context Awareness and User Mobility

Tae-Uk Choi*, Ki-Dong Chungﬂ

ABSTRACT

In ubiquitous environments, context is any information that can be used to characterize the situation
of an entity such as a person or an object. Many sensors and small computers collect contexts and provide
applications with them. Thus, ubiquitous applications need to represent contexts and exploit them
effectively. In this paper, we design and implement a context-aware messaging system, called UMS
(Ubiquitous Messaging System), based on Java and Jini. UMS can represent various contexts using XML
scripts, and communicate text messages regardless of user’s location using the proxy mechanism of Jini.

Keywords: Ubiquitous Computing, Jini, Context Awareness, User Mobility

1. INTRODUCTION

Current computing environments are changing
from desktop computing, where users compute at
a desk, to mobile computing, where users compute
while moving. Currently, computing environments
are changing from mobile to ubiquitous computing,
where users compute at anytime and anywhere. In
ubiquitous environments, computers have been
becoming much smaller with the progress of
hardware technology. These small computers are
embedded into all sorts of things such as ap-
pliances, cars and buildings. They sense and gather
context such as the user’s location, mood and room
temperature, and give the information to ubiquitous
applications.

In these ubiquitous environments, applications

% Corresponding Author : Tae-Uk Choi, Address : (609~
735) San-30, Jangjeon-dong, Geumjeong-gu, Busan,
Korea, TEL : +82-51-518-7502, FAX : +82-51-515-2208,
E-mail : tuchoi@pusan.ac.kr
Receipt date : Jan. 7, 2004, Approval date : March 30, 2004
*Ph.D student, Dept. Computer Science, Busan National
Univ., Busan, Korea
" Professor, Dept. Computer Science, Busan National Univ.,
Busan, Korea.
(E-mail : kdchung @pusan.ac.kr)
¥ This work was supported by grant No. R05-2002-
000-00345-0 from the Basic Research Program of the
Korea Science & Engineering Foundation.

need to satisfy the following requirements. First,
applications should have a context model to
represent and communicate the context. Second,
the user is free to move from one space to another.
To support user mobility, ubiquitous applications
need to cooperate with each other so that user
tasks can migrate from one device to another[1].
Third, ubiquitous applications require a flexible,
reusable, distributed and platform-independent
software architectures. Sun Microsystems recently
released Jini[2] technology that provides an
environment for creating dynamically networked
components, applications and services.

There have been several works related to
context aware applications. Cybreminder{3] is a
message transmission program that reminds users
to do some action in the near future. It collects
contexts, such as time and location, based on
Context ToolKit[4]. Babble[5] is a CMC (Computer-
Mediated Communication) program that simulates
social activities in real world. Using the social
proxy, it gives a sense of the size of the audience,
the amount of conversational activity, and who it
is that is coming and going. Hubbub[6] is an
instant messenger program that can represent the
percipient’s activity state and mood using visual

icons and voice messages. However, these works

A Jini-Based Ubiquitous Messaging System Supporting Context Awareness and User Mobility 833

do not have a common context model but utilize
limited contextual information depending on the
applications, and moreover, they do not provide a
direct solution for user mobility.

In this paper, we implement a ubiquitous
messaging system based on the Jini platform.
Compared to conventional context-aware pro-
grams, this system uses an XML-based context
model to share and communicate contexts, and
transmits messages to the user even when the user
is moving. Section 2 presents the overview of Jini
technology. Section 3 describes the context rep—
resentation model, and Section 4 discusses the
method to support user mobility. In Section 5, we
implement the system architecture based on Jini
and describe the interface and usage of the im-
plemented Ubiquitous Messaging System (UMS).

Lastly, we draw a conclusion in Section 6.

2. OVERVIEW OF JINI

Jini network technology is an open architecture
that enables developers to create network-centric
services that are highly adaptive to changes. By
using objects that move around the network, the
Jini architecture makes each service adaptable to
changes in the network. The Jini architecture
specifies a way for clients and services to find each
other on the network and to work together to get
a task accomplished. Fig. 1 shows the service,
client and proxy in a Jini network[15]. Clients need
to download the proxy to communicate with the
service. The key concepts of Jini are as follows:

Service: A service is an entity that offers a
specific function and is used by a person, a
program or another service. Services in a Jini
network communicate using a service protocol. Jini
provides mechanisms for service construction,
lookup, communication and usage. A service is
discovered and resolved by a lookup service that
acts as a central repository for the service.

Proxy: Services upload serialized Java objects

Lookup service

applicaton

code
Jini | AMI

JVM JVM
Service Client

applicaton
code

IJDBC Jini |

Fig. 1. Jini Service Architecture

{proxies) to the lookup service. This object can be
downloaded to any client and invoked to access the
service. The proxy encapsulates a protocol or
interface for the actual communication between the
proxy object and the service.

Discovery/Join: Jini services and clients should
find a lookup service before they do anything else.
The Discovery/Join protocol provides a built-in
bootstrapping mechanism that enables Jini-enabled
objects to find a lookup service and register their
services.

Lease: For performance of Jini-based distributed
systems, Jini allows clients to access services only
during a restricted time, not permanently. That is,
services are accessed via a valid lease. A lease is
negotiated between the client and the service and
is guaranteed access over a period of time. After
the time expires, the lease is to be renewed if the
client wants to use it longer.

3. USER CONTEXT MODEL

A common model for contexts is required to
represent and transfer contexts between partic-
ipants. ConChat[7] presents a context model based
on first-order predicate calculus and Boolean
algebra. The model covers a wide variety of avail-
able contexts and supports various operations such
as the conjunction and disjunction of contexts.
Jang[8] defined the 5W1H context model that can
be applicable to all types of applications. Fig. 2
shows the message format of the Jang’s context

834 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 6, JUNE 2004

Preliminary Context
Integrated Context

who + \t + what + \t + where + \t + when + \t + how + \t + why + \0

If one of 5W1H is empty, it can be expressed as ~

Fig. 2 Message format of the 5W1H model

model.

It is not easy for applications to use these models
to represent, store, retrieve and transmit compli—
cated or combined contexts. That is to say,
implementing the model-based applications is
difficult. We define a User Context Model that can
represent various contexts and allow applications
to configure and communicate context messages
easily and simply. The User Context Model is
represented as follows:

Context (<User>, <Type>, <Value>)

<User> is the person with whom the context
is concerned, <Type> is the type of context such
as the user’s location, mood, and activity. <Value>
is a value associated with the <Type>. Example
contexts include

Context (Tuchoi, location, room417)

Context (Shpark, mood, happy)

Context (Hansol, activity, idle)

These contexts means that Tuchoi is currently
located in room4l7, Shpark’s mood is happy and
Hansol is idle. This model is simple and can
express the basic and complicated context types.
We represent the model as an XML message to
store, retrieve and communicate contexts easily in
Jini and Java applications. Fig. 3 shows an example

of the context represented by XML.

4. USER MOBILITY

In a ubiquitous environment, a user is free to
access specific services at anytime and anywhere.
This means that the device that is serving the user
could be changed, and task migration is required
between devices. Most related works focused on
host mobility[8-10], which means that a user
carries a device that can access the same service

<?xml version= 1.0 7>
<!~-DTD definition ——>
<!DOCTYPE contextlnfo [
<!ELEMENT contextInfo (Contextltem)*>
<IELEMENT contextltem (user, type, value)>
<!ELEMENT user (#PCDATA)>
<!ELEMENT type ({PCDATA)>
<IELEMENT value #PCDATA)> 1>
<contextInfo>
<contextltem>
<user>Tuchoi</user>
<type>location</type>
<value>room 417</value>
</contextltern>
<contextltem>
<user>Hansol</user>
<type>mood</type>
<value>happy</value>
</contextltem>

</contextInfo>

Fig. 3. XML-based context message

while moving. However, we consider user mobility,
which not only includes host mobility, but also
includes the case where a user is free to switch
from one host to another. This means that the real
end point in ubiquitous communications is not the
host but the person. Recently, there have been
works that can support personal mobility in cellular
phones and PDAs[11,12]. MPA[13] tackles the
problem of personal mobility by introducing a
person layer on top of the application layer. Gui et
al.[14] studied the user-level handoff problem of
multimedia service delivery in ubiquitous computing
environments.

Based on the handoff scheme proposed in[14],
we implement a modified handoff scheme that can
be exploited in Jini/Java environments. Fig. 4
shows the modified handoff protocol. Upon the user

A Jini-Based Ubiquitous Messaging System Supporting Context Awareness and User Mobility 835

Client A Service

context info

messages
—

User g v
Move » A stop commnunication

—

Handoff

Client B ~ procedure

B: inform user's location
User . —
Asrival C: context info

—
messages

leave

Fig. 4. Handoff protocol between Clients and
Service

leaving, Client A stops message communication
and informs the service of the user's moving (Step
A). Upon detection of the user’s arrival, Client B
informs the service of the user’s arrival, and the
service updates the location of the user (Step B).
As a relay, the service transfers the last messages
and context of all users to be used for the next
communication (Step C). After receiving the
context, Client B is ready to resume message
communications.

In Jini, the handoff protocol can be implemented
easily because it utilizes the RMI mechanism, not
sockets. Jini applications are free to access the
service because they use a proxy that is free to
move. Fig. 5 shows the mobility of the proxy. The
service keeps track of the users as they move and
direct the communication to the appropriate clients.

user's moving
proxy| p | ﬂi proxy

Machine A Machine 8

download proxies

Lookup
Service

reglster proxies

Machine C

Fig. 6. Mobility of the proxy in the Jini system

The client processes the user commands and
monitors user activity from pervasive sensors. The
proxy is the interface to communicate messages
and context between the client and the service. The
client needs to download the proxy to communicate
with the service. As a user moves from client A
to client B, client B automatically downloads the
proxy from the lookup service to get context from
the UMS service, and then continue to commu-

nicate messages.

5. IMPLEMENTATION

5.1 System Architecture

We have implemented UbiChatter, a prototype
Ubiquitous Messaging System, using Jini. It
currently allows a user to send and receive only
text messages to another user. Fig. 6 shows the
class diagram of the prototype system, which
consists of the service, client and communication

subsystems.

- Service Subsystem

This subsystem maintains contexts and mes—
sage routing information for user mobility. The
UMSService discovers and joins the Jini's Lookup
service, and registers the proxy to the Lookup
Service. The ContextManager maintains the
XML-based contexts. Contexts is stored in and
retrieved from local buffer. The SessionManager
maintains communication sessions to support user
mobility. A session can be stopped and resumed
by adding or deleting the listener of the session.
The listener is an object of the RemoteEventListener
class. As the user moves to another client, the
listener for the session is updated by the new
client.

- Client Subsystem

This subsystem collects contexts around users
and processes user commands. The UMSClient
searches a lookup service to download the proxy

836

ContextManager

JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 6. JUNE 2004

®readContextinfo() Ul
®w riteC onte xtinfo() %getM essage(
M~
BN s S
\\ BackendPretocol rd .
- % S —— A
-~ * [UMSClient
UM S S ervice ®createSession() o
SdeleteSession() UMSlEDro ®LookforS ervice ()
X
@createProxy () :L";;%‘L"'::e’;‘((z) y SprocessCommand()
®registerWithLookup() ®agdlistener() e oing T
N ®deleteListener() ™ ®eave()
AN // ®setMycontext(Contexis
- Squary ontex
SessionManager ®send() ensor
®movein()
®readSessioninfo() ®m oveout()
SwriteSessioninfo()

Fig. 6 Class Diagram of the prototype of UMS

of the UMSService and communicates with the
service using the proxy. The ContextSensor per-
ceives the contexts around users and transforms
the contexts into the XML-based form. The Ul
displays the information of current connected users,

their context, messages sent and received, etc.

- Communication Subsystem

This subsystem uses the RMI mechanism, on
which Jini is built, to communicate messages. The
client downloads the proxy of the service and then
communicates with the service through the proxy.
The proxy at the client needs RMI stubs to com~

1 Mo esaroma 1
| UMS Client UMSProxy | { UMSService t
i |
L SR

i(1) Login 1

createSession()

e
ﬁﬁ queryContext;

<<context info >>

| |

send()

(Z) Messags |
:Commmunication

getMessage()

moveout{}

[@) Moveout .. Seletetiste

| |
(a) Client A

municate with the service objects (ContextManager
and PLRManager). The BackendProtocol encap-
sulates an interface for RMI communications. This
means the proxy at the client side directly
communicates with the BackendProtocl object at
the server side. Conversely, when the service
transmits a message, RMI can be used too.
Fortunately, Jini provides the RemoteEvent and
RemoteEventListener class. Once the client sends
a RemoteEventListener object to the HandoffManager
of the service, the service can send a message to
the service using the MessageEvent object.

Fig. 7 shows sequential diagrams related to the

[Ty rswrons]
UMSProxy \ UMSSenvice

addLlistener()

i UMSClient

ey
: (4) Move in

mowein()

; |
(b) Client B

Fig. 7. Scenario of user mobility

A Jini-Based Ubiquitous Messaging System Supporting Context Awareness and User Mobility 837

scenario of user mobility. The scenario is as follow:

Step(1): when a user logs into the service in
client A, the client invokes the join method to
create a new session and add a listener for client
A. Then, the client invokes the query method to
get the contexts of other users connected in the
service.

Step(2): when the user communicates messages
with the service in client A, the client calls the send
method to transmit a message, and the service calls
back the getMessage method as other user sends
a message to the user.

Step(3): when the user moves out from client
A, the client calls the moveout method to delete
the listener connected to the client. So, the client
cannot send a message any more.

Step(4): when user moves into client B, the
client invokes the movein method to add a new
listener for the user. As a reply, the service returns
the context of the user.

Step(5): the user resumes message communi-

cation with the service in client B.

reggie

Step(6): when the user logs out of the service,
the client invokes the deleteSession method to
close the session for the user.

5.2 Experiments

In several Pentium4 PCs installed Windows 2000
Server and Windows XP, we implement the UMS
application using JDK 1.3 and Jini Development Kit
1.2.1. To run Jini applications, the following
services are required: HTTP servers to download
RMI codes, a RMI demon, which is widely used
by Jini services to manage the activation and
deactivation of service objects, and a lookup
service (reggie) to manage the proxies of
application services. Fig. 8 shows the services that
are required to run UMS. Fig. 9 shows the service
and client of UMS. The service is displaying the
message that denotes the service ID after
registering the proxy in the lookup service. The
client is displaying the message after finding the
service and downloading the proxy.

Fig. 10 shows the user interface of the UMS

Fig. 9. The service and client of UMS

838 JOURNAL OF KOREA MULTIMEDIA SOCIETY,

uchoi: what are you doing?

Fig. 10. User interface of UMS

B3 ubiChatte

move out>: hansol moved putroom417 at 11:10:05 AM.

chol: What are you doing?
ihansaol: | am going to room 405.

(a) Before movement

VOL. 7, NO. 8, JUNE 2004

client that consists of Context View, Event View
and Message View. In Context View, the logged—-in
user can publish his/her contexts by selecting the
context type and inputting a value. As well, the
user can retrieve the contexts of other connected
users by querying in terms of user name or context
type. In this figure, we can see the result of the
query to find the contexts related to the user
hansol. Event view displays the events such as
user movement when some contexts change. The
Message View is similar to that of conventional
chatting programs, but the user needs to input the
other user ID to send a message.

Fig. 11 shows user mobility in UMS. Before a
user moves, the user types the location value to
null in the previous UMS client. Then the move
out event occurs (see Fig. 11 (a)). After moving,
the user inputs the new location value in the new
UMS client. Then the move in event is displayed
(see Fig. 11(b)). Like this, the user continues to
communicate messages even though he/she moves.

23 UbiC hatter

location
mood
activation

- What are you doing?
Fihansol: | am going fo room 405.
fuchoi: Why?
hansol: because ofthe semina.

(b) After movement

Fig. 11. User mobility in UMS

A Jini-Based Ubiquitous Messaging System Supporting Context Awareness and User Mobility 839

6. RELATED WORKS

In terms of context and user mobility, we
summarized the features of the several messaging
systems in Table 1. MSN messenger(16] and
ICQI17] are the messenger programs many people
use currently. But they employ only status infor-
mation such as on-line, off-line and idle. Babble[5]
transmits social cues such as audience size and
how actively people are participating in a mul-
tiparty chat scenario. Hubbubl6] uses sounds to
give awareness cues of other people and visualizes
the other person’s status during a conversation.
Conchat[7] can represent various contexts but does
not support user mobility. However, proposed
UMS can represent various contexts as well as
support user mobility.

Table 1. Comparison of the messaging systems

. User
Context Information Mobility
MSN Status information No
Messenger (online, idle, offline)

Status information
1cQ (online, idle, offline) No

Babble Social cues No
Hubbub Sound, Icons and Location No
ConChat Various contexts No
UMS Various contexts Yes

7. CONCLUSIONS

Ubiquitous applications need to exploit various
contexts perceived from many sensors and small
computers. This paper has presented a context-
aware messaging system as a ubiquitous application.
We have discussed a user context model and user
mobility that should be considered in the design
of ubiquitous applications. Then, we have imple-
mented a prototype of UMS using Java and Jini.
Through the test runs of UMS and the comparison
to other messaging systems, we found out that the
merits of UMS are as follows.

« Awareness of various contexts: UMS can
provide a user with various contexts such as
location, mood and activity. Knowing such
contexts makes the communication richer.

= Support of user mobility: UMS employs Jini
technology to move the Java object code so that
a user can continue to communicate messages even

though he/she moves.

However, this UMS has no sensors to perceive
the contexts from real world, that is, it is dependent
on the context information that the user inputs. So,
we have plans to embed the sensors in the UMS
to collect real contexts. Moreover, we will improve
UMS to communicate multimedia data such as
voice, music and video.

8. REFERENCES

[1] J. P. Sousa and D. Garlan, Aura: an Archi-
tectural Framework for User Mobility in
Ubiquitous Computing Environments, IEEE/
IFIP Conference on Software Architecture,
Montreal, 2002.

[2] Sun Microsystems, http://developer.java.sun.
com/developer/products/jini

[3] A. K. Dey and G. D. Abowd, CybreMinder:
A Context-aware System for Supporting
Reminders, Proc. 2" International Symposium
on Handheld and Ubiquitous Computing, New
York, 2000.)

[4] A. K. Dey and G. D Abowd, The Context
Toolkit: Aiding the Development of Context-
Enabled Applications, Proc. Workshop Soft-
ware Eng. for Wearable and Pervasive Com-
puting, New York, 2000.

[5] T.Erickson et al., Socially Translucent Systems:
Social Proxies, Persistent Conversation and
the design of Babble, Proc. Human Factors in
Computing Systems, New York, 1999.

[6] E. Lsaacs, A. Walendowski, and D. Ranga-
nathan, Hubbub: A Sound-Enhanced Mobile
Instant Messanger that Supports Awareness

840 JOURNAL OF KOREA MULTIMEDIA SOCIETY

and Opportunistic Interactions, Proc. Conf.
Computer Human Interaction, New York,
2002.

[7] A.Ranganathan, R. H. Campbel], A. Ravi, and
A. Mahajan, ConChat: A Context-Aware
Chat Program, In IEEE Pervasive Computing,
pp. 52-58, July-Sept 2002.

[81 David Johnson, Scalable Support for Trans-
port Mobile Host Internetworking, Mobile
Computing, 1996.

[9] D. A. Maltz and P. Bhagwat, MSOKS: An
Architecture for Transport Layer Mobility,
Proc. IEEE Infocom’98, 1998.

[10] Alex Snoeren and Hari Balakrishnan, An
End-to-End Approach to Host Mobility, Proc.
ACM/IEEE MobiCom’99, 1999.

[11] H. J. Wang et al. ICEBERG: An Internet-core
Network Architecture for Integrated Commu-
nications, IEEE Personal Communications,
Special Issue on IP-based Mobile Telecom-
munication Networks, 2000.

[12] B. Raman, R. H. Katz and A. D. Joseph,
Universal Inbox: Providing Extensible Per-
sonal Mobility and Service Mobility in an
Integrated Communication Network, in Work-
shop on Mobile Computing Systems and
Applications (WMCSA'00), 2000.

{131 G. Appenzeller et al. The Mobile People
Architecture, ACM Mobile Computing and
Communication Review, Vol. 1, No. 2, 1999.

[14] Yi Cui, K. Nahrstedt, D. Xu, Seamless User-

. VOL. 7, NO. 6, JUNE 2004

level Handoff in Ubiquitous Multimedia Ser—
vice Delivery, Multimedia Tools and Appli-
cations Journal, 2003.

[15] Edwards, W. Keith, Core Jini, Prentice Hall
PTR, 1999.

[16] MSN Messenger, http://www.msn.co.kr

[17]1 1ICQ, http://www.icq.com

Tae-Uk Choi

He received the B.S degree in

computer science & statistics

from Dong-eui University, Pusan,

Korea, in 1997, and M.S degree

in computer science from Pusan

& National University, in 1999. He

is currently pursuing the Ph.D

degree in computer science at the same university. His

research interests include Reliable Video Communi-

cations, Multimedia QoS, and Mobile & Ubiquitous
Multimedia.

Ki-Dong Chung

He received the B.S degree from
Seoul National University, Seoul,
Koera, in 1973, and M.S and
Ph.D degree in computer science
from the same university, in
1975 and 1986. In 1990, he was
a visiting scholar at Massa
chusetts Institute of Technology, Cambridge, MA.
Since 1987, he has been a professor of computer science
at Pusan National University, Pusan, Korea. His
research interests include Operating System, Parallel
Processing, VOD(Video On Demand), Multimedia
Systems, and Wireless & Mobile Multimedia

