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A Write Notification Approach for Optimistic
Concurrency Control Schemes

SungChan Hong*

ABSTRACT

The performance of optimistic concurrency control schemes which are generally used for Mobile
computing is very sensitive to the transaction abort rate. Even if the abort probability can be reduced
by back-shifting the timestamp from the time of requesting a commit, some transactions continuously
perform unnecessary operations after the transactions accessed write-write conflicting data. In this paper,
we propose an optimistic protocol that can abort the transactions during the execution phase by using
the write notification approach. The proposed protocol enhances the performance of the optimistic
concurrency control by reducing the unnecessary operations. In addition, we present a simulation study
that compares our schemes with the timestamp based certification scheme. This study shows that our
scheme outperforms the timestamp based certification scheme.
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1. Introduction control schemes can be characterized as either the
optimistic approach or the pessimistic approach. In

The concurrency control schemes can pro- the optimistic concurrency control (OCC), trans-

foundly affect the performance of transaction proc-
essing systems[1-6]. Generally, the concurrency

actions run without waiting to ensure non-
conflicting access to data, and transactions are
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than the pessimistic concurrency control method in
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transaction abort rate.

Different methods of implementing the cer—
tification scheme for the OCC have been proposed.
The popular variations of OCC are pure OCCI[5],
broadcast OCC[7], OCC based on timestamp his-
tory (TSH)[4], OCC with Serialization Graph[12,
13] and Distributed OCC[14]. In the Pure OCC,
transactions are aborted only at the transaction
commit time if conflicting access is detected. In the
broadcast OCC[7], committing transactions cause
the abort of conflicting transactions in the middle
of their execution. Because OCC dose not use any
locking mechanisms, many researches for the
mobile computing suppose that validation based
scheme will be more effective in the mobile com-
puting environments[12,13]. However, the weak
point of OCC with Serialization Graph[12,13] is that
the space and time overhead in maintaining
serialization graphs. In addition, the schemes have
no mechanism reducing the abort rates.

The Distributed OCC[14] uses a broadcast OCC
for first run and locking for second run. Even if
the scheme reduces the abort rate by locking in
second run, performance of the scheme is very
similar with the standard locking approaches.
TSH[4] can reduce the abort probability by
back-shifting the timestamp from the time of
requesting a commit. TSH outperforms the other
OCC schemes because TSH only reduces the
number of aborts without maintaining locking
information, multi-version or serialization graphs.

Our primary goal is to enhance the performance
of the TSH by reducing the unnecessary opera-
tions and certification overhead. We provide an
algorithm to abort the transactions when it is
accessing a write-write conflicting data item. In
addition, we extend the algorithm to reduce the
overhead of validation in this paper. Our scheme
is an extension of the TSH and consists of
additional data structures. Using our algorithm,
transactions abort at an earlier time than the TSH

without any spurious aborts.

2. Write Notification for Certification
Protocol

In this paper, for the sake of notational simplicity
T denotes timestamp, S denote set, i denote read,
D denote data and W denote write. In the TSH,
each transaction obtains a unique timestamp at the
commit time. It maintains a read timestamp RT
and write timestamp WT for each data item. The
read timestamp and write timestamp are the
timestamps of the most recent committed trans-
action that read the data and wrote the data,
respectively. It maintains k& write timestamps
history (WTy, ..., WTk) for a data item, with WT;
as the oldest update and W7k as the lastest update,
so that WT = WTi. A transaction views each data
item as a (name, version) pair. For each data read,
the transaction tracks the WT of the data as its
version. Before certification, a timestamp ST, equal
to the certification time, is generated for the
transaction. For each read operation RD;, [ = 1,...,
m, for data D, the read version is checked with
the current WT of the data item. If the read
versions are equal to their current WTs, the
transaction is certified and the read timestamps
and the write timestamp history are updated. If it
isn't, it simply means that those data items have
been updated subsequently by other committed
transactions. In this situation, the TSH tries to find
an alternative back-shifted timestamp instead of
the commit timestamp. For each ED; the TSH
compares its version number accessed by the
transaction with the write history WTi(RD)),
WTARD), ..., WIHi{RD,). If it can’t find some
WTi(RD:) equal to the version read for any RD;,
the transaction is aborted. Otherwise, the valid
interval of RD; is (WTARD)), WT;-i(RD;)) where
WT;(RD) is equal to the version number accessed
for RD:.. The valid interval of write timestamp
WT{RD;) is (WTi{RD;), ST). If there is no
intersection of the valid intervals, the transaction
is aborted. Additionally, if the upper bound of the
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intersection of all intervals is equal to ST, no
back-shift is needed. Otherwise, it will find a new
timestamp N7. The TSH scheme checks whether
its read timestamp, RT(WD)), is less than NT. If
it fails to do this, the transaction is aborted. If the
transaction has not yet been aborted by previous
processing, it can be certified with the timestamp
NT. For each WD, if NT is greater than
WT(WDy), then an update is made to the database;
otherwise, the write is not reflected in the database
(Thomas' write rulel5)). In either case, the write
history is updated accordingly. The read timestamp
RT(RD;) is set to the maximum of the current BT
and NT.

In TSH, some transactions continuously perform
unnecessary operations even after they have ac—
cessed write-write conflicting data items, because
they can not be aborted during execution phase.
The difference between our approach and the TSH
is that a transaction notifies the server whenever
the transaction performs write operations. It works
as follows. The server maintains a set of current
running transaction identifiers CS. It also main-
tains a maximum timestamp M7 for each
transaction identifier 7; in set CS. Therefore, the
set CS consists of (T}, MT) pairs. Timestamp MT
makes it possible to distinguish whether the trans-
action associated with timestamp M T accessed the
conflicting data item or not. The Initial value of
timestamp MT is the initial value of the read
timestamp (i.e., MT = RT;). The server also main-
tains a set of read transactions(RS) and a set of
write notifying transactions(WS) for each data
item D. The set RS is maintained to update the
timestamp M7 and the set WS is maintained to
decide whether to abort. When transaction 77 is
started, the server inserts the transaction identifier
T: into set CS and sets timestamp M7T; of the
transaction 7; to timestamp R7;. Whenever
transaction 7: reads each data item D), transaction
identifier T; is inserted into set RS;. Whenever
transaction 7; writes on each data item Dx, the

transaction sends a write notifying message to the
server. When the server gets the message, it
checks whether transaction 77 has accessed any
write-write conflicting data item or not. If it has
accessed conflicting data items, then transaction 7;
is aborted. However, if it has not accessed con—
flicting data items, then transaction identifier 7; is
inserted into set WSk

When transaction 7; requests a commit, we use
the validation algorithm in[4]. After transaction T;
passed the validation phase, we try to find con—
flicting transactions based on set RSs and WSs.
For each data D; that was read and written by
transaction T, if a transaction identifier is in set
RS; and WS;, the transaction is aborted. After all
conflicting transactions have been aborted, all
timestamp M7T; is updated only if transaction
identifier 77 is in set RSk of data Dy that was
written by transaction 7:. Transaction T is
committed after all information of transaction T;
have been deleted from set CSs, BSs and WSs.

Although clients do not send the write no-
tification messages to the server, consistency is
not broken. In our scheme, the write notification
messages are used only to reduce unnecessary
operations. Therefore, the write notification mes—
sages are piggy—backed on other messages being
exchanged between the client and server. There is
always a certain amount of such traffic. For ex-
ample, clients send messages to the server for read
operations or servers and clients exchange “I'm
alive” messages for failure detection purposes.
Therefore, our scheme does not cause any extra
message traffic, although messages may be longer
since write notification messages are piggy-
backed in these messages.

When the server gets this message, it compares
maximum timestamp M7T; with the current read
timestamp R7T:x on notified data item Dy The
transaction 7 is aborted only if the value of
timestamp M7; is not the initial value and
timestamp M7T: is less than or equal to read
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timestamp E7Tk This means that transaction 7 is
accessing conflicting data, because timestamp M T;
is updated only if another committing transaction
updates the data read by transaction T:. In addition,
if timestamp M7 is less than or equal to BTk, the
transaction can not find a re~orderable timestamp.
. Therefore, the transaction i1s aborted and the
algorithm is terminated. If transaction 7; is not
aborted, transaction identifier 73 is inserted into set
WSk of notified data Dx.

Regardless of whether the transaction is com-
mitted normally or re-ordered, assume that the
committing transaction identifier is 7. For each
accessed data D« by committing transaction 7, if
transaction identifier 7 is in set WSk and RSk, and
transaction identifier 7T; is also in set WSk and RSk,
then it means that transaction 7; read and wrote
data Di that was updated by transaction 7;. In this
case, transaction 7; has to be aborted in the
validation phase because it accessed write-write
conflicting data Dk Therefore, transaction 7: is
aborted when transaction 77 is committed in our
scheme. When transaction 7; is aborted, the
information of transaction T; is deleted from set
CS.

When transaction 7 is committed normally with
timestamp S7, each timestamp M7; is set to
timestamp ST only if timestamp MT; = RT}, where
MT; denotes the maximum timestamp of the
transaction identifier 7y that is in set RS: as-
sociated with data WDk written by committing
transaction 7.

When transaction T; is committed with a re-
ordered timestamp OT, each timestamp M7 will
be set to a re-ordered timestamp OT only if
timestamp M7, = RT; or MT; > OT, where MT;
denotes the maximum timestamp of transaction
identifier 77 that is in set RSk associated with data
WD, updated by re-ordered transaction 7.
Therefore, the value of maximum timestamp MT
is never increased after the value of MT is changed
from RT: After this happens, all transaction
identifiers 7 in set RSk or WSk of accessed data

item Dy by transactions T; are deleted. After all
transaction identifiers have been deleted, the
information of transaction 7; is also deleted from
the set CS.

To prove that our scheme is correct, we have
to prove that all histories representing executions
that could be produced by it are serializable. In
TSH, the assignment of a transaction timestamp
in the valid interval of all read data items to a
committing transaction guarantees that the edges
from the committing transaction are to trans-
actions with a larger timestamp. Requiring the
transaction timestamp to be larger than the read
timestamp of updated data implies that no trans-
action with a larger timestamp has an edge into
the committing transaction. This ensures that the
serializatioh graph is acyclic. Because our cer—
tification scheme is based on TSH, all histories
produced by our scheme are serializable by the
Serializability Theorem.

3. Simulation Study

In this section, we present a simulation study
to demonstrate that our Write Notification scheme
(WN) outperforms the TSH. All the simulations
were done using a discrete event model. Table 1
shows the relevant system parameters, settings
and their meanings for our simulator. The pa-
rameters and settings were chosen based on[11].
In this study, the number of transactions is as-
sumed to be parameter Num_Tran and the number
of data is assumed tp be parameter Num_Data.
The parameter OP denotes the mean number of
operations accessed per transaction. The write
probability is determined by the parameter Per_
Write. Th parameters Time_Read, Time_Write,
Time_Net, Time_Restart and Time_Valid denote
processing time. In this study, we set 3 for write
timestamp history.

Fig. 1 presents abort rates with various numbers
of transactions and operations when the write
probability is set to 20%. Fig. 1 shows that the



Table 1. Parameters, Settings and their meanings
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Parameters Settings Meanings
Num_Data 1000 Number of data
Num_Tran | 10~25 Number of
transactions
or 10, 20, 30 |Number of operations
N .
Per Write 20% Percentage 'o_f write
probability
Time_Read |20 time units| Read access time
Time_Write |30 time units| Write access time
Time_Net |40 time units Network delay
Time_Restart| 20 time units Re-start delay
Time_Valid Num_Op er X Validation time
Time_Read
Hist_Size 3 Size of Write History

number of aborts of the WN is equal to or slightly
greater than that of the TSH across a range of
parameter setting. The reason of more aborts in
the WN than the TSH is that some transactions
can be aborted in their execution phase in our
scheme. However, this case is rare. Additionally,
even if the number of aborts is just little increased,
our scheme reduces the unnecessary operations.
This kind of aborts can be treated using the rerun
policy introduced in[9].

Fig. 2 presents the number of re-ordered
transactions with various numbers of transactions
and operations when the write probability is set to
20%. The number of re-ordered transactions is a
good evidence that shows our scheme does not
make any spurious aborts. As Fig. 2 shows, the
numbers of re—ordered transactions of the WN and
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the TSH are almost the same in all parameter
setting. It means that the WN scheme does not
make any spurious aborts that are occurred in the
broadcast OCC. In other words, our scheme aborts
only the transactions that would be aborted in the
TSH scheme. The reason of the difference in the
number of re-ordered transactions is that some
transactions are aborted in the execution phase in
our scheme. Hence, commit orders are not the same
even if two schemes are simulated in the same
environment. Changing commit order can effect
the number of re-ordered transactions.

Fig. 3 presents the mean response time with
various numbers of transactions and write pro-
babilities when the number of operations is set to
10. A crucial point of the result is that the response
time gap between the WN and the TSH grows as
the write probability grows. Because our scheme
aborts some transactions that accessed write—
write conflicting data, the gap between the WN
and the TSH becomes larger as the write
probability increases.

Fig. 4 presents the mean response time with
various numbers of transactions and write pro-
babilities when the number of operations is set to
30. Changing the number of operations has large
impact on the response time. It means that trans-
action length significantly affects the performance
in the OCC schemes, because the abort probability
of a long transaction is higher than that of a short
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one. Compared with Fig. 3, Fig. 4 shows more gaps
between the WN and the TSH. Because the
proposed scheme reduces the unnecessary opera-
tions, its benefit in terms of response time becomes

larger as the number of operations increases.
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4. Conclusion

In this paper, we proposed a protocol that can
abort the transaction during the execution phase
when it accesses a write-write conflicting data
item using write notification approach. The dif-
ference between our approach and the certification
based on timestamp history is that a transaction
notifies its write operations to servers when the
transaction performs write operations.

An important characteristic of our scheme is
that our scheme does not make any spurious aborts
that may happen in the broadcast optimistic con-
currency control. Moreover, our scheme does not

cause extra message traffic, because the write

notification messages are piggy-—backed on other
messages. By the simulation, we showed that our
scheme outperforms the certification based on
timestamp history with reduction of unnecessary
operations. In addition, performance gap between
our scheme and optimistic concurrency control
with timestamp history becomes larger as the
number of operations and the write probability
increase. Hence, our scheme is a suitable scheme
in an environment that has long transactions and
high write probability.
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