Comparative Expression of the Aedes aegypti 5-Hydroxytryptamine7 Receptor in Drosophila Schneider2 and Chinese Hamster Ovary-K1 Cells

초파리 Schneider2 세포와 Chinese hamster ovary-K1 세포에서 Aedes aegypti 5-Hydroxytryptamine7 수용체의 발현비교

  • 이대원 (서울대학교 농업생명과학대학 농생명공학부)
  • Published : 2004.06.01

Abstract

Serotonin receptor binds to serotonin (5-HT) and activates effector proteins such as adenylyl cyclase, phospholipase C, cyclic GMP phosphodiesterase or ion channel through G protein on the cell membrane, resulting in various physiological responses like diuresis, memory and development. To examine the comparative expression of the 5-HT$\_$7/ receptor of Aedes aegypti, the Aedes 5-HT$\_$7/ receptor gene was transfected into Drosophila Schneider2 (S2) cells and mammalian Chinese hamster ovary (CHO)-Kl cells. The expression of the Aedes 5-HT$\_$7/ receptor gene in selected cell lines, Tr-CHO and Tr-S2, was confirmed with reverse transcription-PCR, Western blot and immunocytochemistry. Compared with the induced intracellular cAMP level of Tr-S2 cell line to 5-HT, the induced cAMP in the Tr-CHO cell line was over 9 times higher and was dose-dependent. These results suggest that the functionality of Aedes 5-HT$\_$7/ receptor is much more effective in mammalian CHO-K 1 cells and that the Tr-CHO cell line expressing Aedes 5-HT$\_$7/ receptor can be used for synthetic agonist or antagonist candidate screening.

세로토닌 수용체는 세로토닌과 반응하여 세포막의 G단백질을 통해 중개단백질 (adenylyl cyclase, phospholipase C, cGMP phosphodiesterase, ion channel)을 활성화시켜, 이뇨, 기억, 발생 등의 다양한 생리적 반응에 관여한다. 곤충세포인 Schneider2 (S2)와 척추동물 세포인 Chinese hamster ovary (CHO)-Kl에서 Aedes 5-HT$_{7}$ 수용체 유전자 발현을 비교하기 위해, Aedes 5-HT$_{7}$ 수용체 유전자를 형질이입시켰다. 선발된 세포주들(Tr-S2, Tr-CHO)에서 세로토닌 수용체 유전자의 발현은 reverse transcription-PCR, Western blot, immunocytochemistry를 이용하여 확인하였다. 세로토닌 농도증가에 대한 Aedes 5-HT$_{7}$수용체의 기능을 세포 내 cAMP수준을 통해 조사한 결과,Tr-CHO 세포주는 Tr-S2 세포주보다 9배 이상 cAMP수준이 높게 나타났으며, 농도에 의존적이었다. 이 결과는 수용체 유전자가 세포에서 발현되었으나, 세포의 종류와 세포막에 존재하는 G단백질 차이에 따라 중개단백질 활성 차이가 있다는 것을 보여주었다. CHO-Kl 세포에서 Aedes 5-HT$_{7}$ 수용체의 기능이 S2 세포보다 더 효율적이며, Aedes 5-HT$_{7}$ 수용체를 발현하는 Tr-CHO 세포주는 동력제 또는 대립제 검정에 활용될 수 있을 것으로 기대된다. 것으로 기대된다.

Keywords

References

  1. Adams, T.S. 1999. Hematophagy and hormone release. Ann. Entom. Soc. Am. 92: 1~13
  2. Audsley, N., I. Kay, T.K. Hayes and G.M. Goast. 1993. The effect of Manduca sexta diuretic hormone on fluid transport by the Malpighian tubules and cryptonephric complex of Manduca sexta. J. Exp. BioI. 178: 231-243
  3. Barnes, N.M. and T. Sharp. 1999. A review of central 5-HT receptors and their function. Neuropharmacol. 38: 1083~1152 https://doi.org/10.1016/S0028-3908(99)00010-6
  4. Bicker, G. and R. Menzel. 1989. Chemical codes for the control of behaviour in arthropods. Nature 337: 33-39 https://doi.org/10.1038/337033a0
  5. Boundy, V.A., L. Lu and P.B. Molinoff. 1996. Differential coupl-ing of rat D2 dopamine receptor isoforms expressed in Spodop-tera frugiperda insect cells. J. Pharmacol. Exp. Ther. 276: 784-794
  6. Butkerait, P., Y. Zheng, H. Hallak, T.E. Graham, H.A. Miller, K.D. Burris, P.B. Molinoff and D.R. Manning. 1995. Expres-sion of the human 5- hydroxytryptamine$_IA$ receptor in Sf9 cells. Reconstitution of a coupled phenotype by co-expression of mammalian G protein subunits. J. BioI. Chem. 270: 18691-18699 https://doi.org/10.1074/jbc.270.31.18691
  7. Clark, T.M., A. Koch and D.F. Moffett. 1999. The anterior and posterior 'stomach' regions of larval Aedes aegypti midgut: regional specialization of ion transport and stimulation by 5-hydroxytryptamine. J. Exp. BioI. 202: 247-252
  8. Clark, T.M. and T.J. Bradley. 1996. Stimulation of Malpighian tubules from larval Aedes aegypti by secretagogues. J. Insect Physiol. 42: 593~602 https://doi.org/10.1016/0022-1910(95)00124-7
  9. Clark, T.M. and T.J. Bradley. 1997. Malpighian tubules of larval Aedes aegypti are hormonally stimulated by 5-hydroxytryp-tamine in response to increased salinity. Arch. Insect Biochem. Physiol. 34: 123~141 https://doi.org/10.1002/(SICI)1520-6327(1997)34:2<123::AID-ARCH1>3.0.CO;2-Y
  10. Coast, G.M. 1996. Neuropeptides implicated in the control of diuresis in insects. Peptides 17: 327~336 https://doi.org/10.1016/0196-9781(95)02096-9
  11. Coast, G.M. 1998. Insect diuretic peptides: structures, evolution and actions. Am. Zool. 38: 442~449
  12. Coast, G.M., I. Orchard, J.E. Philips and D.A. Schooley. 2002. Insect diuretic and antidiuretic hormones. Adv. Insect Physiol. 29: 279~409 https://doi.org/10.1016/S0065-2806(02)29004-9
  13. Colas, J.-F., J.-M Launay and L. Maroteaux. 1999. Maternal and zygotic control of serotonin biosynthesis are both necessary for Drosophila germband extension. Mech. Dev. 87: 67~76 https://doi.org/10.1016/S0925-4773(99)00140-9
  14. Colas, J.-F., J.-M. Launay, O. Kellermann, P. Rosay and L. Maroteaux. 1995. Drosophila 5-$HT_2$ serotonin receptor: coex-pression with fushi-tarazu during segmentation. Proc. Natl. Acad. Sci. USA 92: 5441-5445 https://doi.org/10.1073/pnas.92.12.5441
  15. Gerhardt, C.C. and H. van Heerikhuizen. 1997. Functional charac-teristics of heterologously expressed 5-HT receptors. Eur. J. Pharmacol. 334: 1~23 https://doi.org/10.1016/S0014-2999(97)01115-1
  16. Giles, H., S.J. Lansdell, M.L. Bolofo, H.L. Wilson and G.R. Martin. 1996. Characterization of a 5-$HT_IB$ receptor on CHO cells: functional responses in the absence of radioligand bind-ing. Br. J. Pharmacal. 117: 1119-1126 https://doi.org/10.1111/j.1476-5381.1996.tb16705.x
  17. Hill, C.A., A.N. Fox, R.J. Pitts, L.B. Kent, P.L. Tan, M.A. Chrystal, A. Cravchik, F.H. Collins, H.M. Robertson and L.J. Zwiebel. 2002. G protein-coupled receptors in Anopheles gambiae. Science 298: 176~178 https://doi.org/10.1126/science.1076196
  18. Holman, G.M., R.J. Nachman and G.M. Coast. 1999. Isolation, characterization and biological activity of a diuretic myokinin neuropeptide from the housefly, Musca domestica. Peptides 20: 1~10 https://doi.org/10.1016/S0196-9781(98)00150-8
  19. Kay, I., G.M. Coast, O. Cusinato, C.H. Wheeler, N.F. Totty and G.J. Goldsworthy. 1991. Isolation and characterization of a diuretic peptide from Acheta domesticus, evidence for a family of insect diuretic peptides. Biochem. Chem. 372: 505~512
  20. Kozak, M. 1987. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucl. Acids Res. 15: 8125-8148 https://doi.org/10.1093/nar/15.20.8125
  21. Laemmli, U.K 1970. Cleavage of structural proteins during the assembly of the head of bacteriphage T4. Nature 227: 680~685 https://doi.org/10.1038/227680a0
  22. Lange, A.B., I. Orchard and F.M. Barrett. 1989. Changes in haemolymph serotonin levels associated with feeding in the blood sucking bug, Rhodnius prolixus. J. Insect Physiol. 35: 393~399 https://doi.org/10.1016/0022-1910(89)90113-3
  23. Laurenza, A., E.M. Sutkowski and K.B. Seamon. 1989. Forskolin: a specific stimulator of adenylyl cyclase or a diterpene with multiple sites of action? Trends Pharmacol. Sci. 10: 442~447 https://doi.org/10.1016/S0165-6147(89)80008-2
  24. Lee, D.-W. and P.V. Pietrantonio. 2003. In vitro expression and pharmacology of the 5-$HT_7$-like receptor present in the mos-quito Aedes aegypti tracheolar cells and hindgut-associated nerves. Insect Mol. BioI. 12: 561~569 https://doi.org/10.1046/j.1365-2583.2003.00441.x
  25. Lehmberg, E., R. Ota, K. Furuya, D. King, S. Applebaum, H. Ferenz and D. Schooley. 1991. Identification of a diuretic hor-mone of Locusta migratoria. Biochem. Biophys. Res. Commun. 179: 1036~1041 https://doi.org/10.1016/0006-291X(91)91923-Z
  26. Nassel, D.R. 1996. Neuropeptides, amines, and amino acids in an elementary insect ganglion: functional and chemical anatomy of the unfused abdominal ganglion. Prog. Neurobiol. 48: 325-420 https://doi.org/10.1016/0301-0082(95)00048-8
  27. Novak, M.G., J.M. Ribeiro and J.G. Hildebrand. 1995. 5-hydroxy-tryptamine in the salivary glands of adult female Aedes aegypti and its role in regulation of salivation. J. Exp. BioI. 198: 167-174
  28. Novak, M.G. and W.A. Rowley. 1994. Serotonin depletion affects blood-feeding but not host-seeking ability in Aedes triseriatus (Diptera: Culicidae). J. Med. Entomol. 31: 600-606
  29. Ohtaki, T., K. Ogi, Y. Masuda, K. Mitsuoka, Y. Fujiyoshi, C. Kitada, H. Sawada, H. Onda and M. Fujino. 1998. Expression, purification, and reconstitution of receptor for pituitary adeny-late cyclase-activating polypeptide: Large-scale purification of a functionally active G protein-coupled receptor produced in Sf9 insect cells. J. BioI. Chem. 273: 15464~15473 https://doi.org/10.1074/jbc.273.25.15464
  30. Pietrantonio, P.V., C. Jagge and C. McDowell. 2001. Cloning and expression analysis of a 5$HT_7$-like serotonin receptor cDNA from mosquito Aedes aegypti female excretory and respiratory systems. Insect Mol. BioI. 10: 357~369 https://doi.org/10.1046/j.0962-1075.2001.00274.x
  31. Pietrantonio, P.V., G. Gibson, D. Petzel, A. Strey and T.K. Hayes. 2000. Characterization of a leucokinin binding protein in Aedes aegypti (Diptera: Culicidae) Malpighian tubule. Insect Bio-chem. Mol. BioI. 30: 1147~1159 https://doi.org/10.1016/S0965-1748(00)00091-6
  32. Roeder, T. 1994. Biogenic amines and their receptors in insects. Comp. Biochem. Physiol. 107C: 1~12 https://doi.org/10.1016/0300-9629(94)90264-X
  33. Saudou, F., U. Boschert, N. Amlaiky, J.-L. Plassat and R. Hen. 1992. A family of Drosophila serotonin receptors with distinct intracellular signaling properties and expression patterns. EMBO J.11: 7-17
  34. Schoofs, L., G.M. Holman, P. Proost, J. Van Damme, T.K. Hayes and A. De Loof. 1992. Locustakinin, a novel myotropic peptide from Locusta migratoria, isolation, primary structure and syn-thesis. Regul. Pept. 37: 49~57 https://doi.org/10.1016/0167-0115(92)90063-Z
  35. Schooley, D.A. 1991. Chemical identification of insect diuretic peptides. pp. 83~94. In Insect Neuropeptides: Chemistry, Bio-logy and Action, eds. by J.J. Menn, T.J. Kelly and E.P. Malser. 453pp. American Chemical Society, Columbus, OH
  36. Seamon, K.B., W. Padgett and J.W. Daily. 1981. Forskolin: unique diterpene activator of adenylate cyclase in membranes and intact cells. Proc. Natl. Acad. Sci. USA 78: 3363-3367 https://doi.org/10.1073/pnas.78.6.3363
  37. Towbin, H.R., R. Stachelin and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applicatin. Proc. Natl. Acad. Sci. USA 76: 4350-4354 https://doi.org/10.1073/pnas.76.9.4350
  38. Yu, M.J. and K.W. Beyenbach. 2002. Leucokinin activates $CA^2+$ -dependent signal pathway in principal cells of Aedes aegypti Malpighian tubules. Am. J. Physiol. 283: F499-F508
  39. Valles, A.M. and K. White. 1988. Serotonin-containing neurons in Drosophila melanogaster: development and distribution. J. Compo Neurol. 268: 414~428 https://doi.org/10.1002/cne.902680310
  40. Vanden Broeck, J. 2001. Insect G protein-coupled receptors and signal transduction. Arch. Insect Biochem. Physiol. 48: 1~12 https://doi.org/10.1002/arch.1054
  41. Veenstra, J.A. 1988. Effects of 5-hydroxytryptamine on the Malpighian tubules of Aedes aegypti. J. Insect Physiol. 34: 299~304 https://doi.org/10.1016/0022-1910(88)90139-4
  42. Witz, P., N. Amlaiky, J.-L. Plassat, L. Maroteaux, E. Borrelli and R. Hen. 1990. Cloning and characterization of a Drosophila serotonin receptor that activates adenylate cyclase. Proc. Natl. Acad. Sci. USA 87: 8940-8944 https://doi.org/10.1073/pnas.87.22.8940