Several Factors Affecting Transformation Efficiency of tall Fescue

톨페스큐의 효율적인 형질전환을 위한 몇 가지 요인의 영향

  • 김진수 (경상대학교 응용생명과학부) ;
  • 이상훈 (경상대학교 응용생명과학) ;
  • 이병현 (경상대학교 응용생명과학부)
  • Published : 2004.06.01

Abstract

A system for the production of transgenic plants has been developed for tall fescue (Festuca arundinacea Schreb.) via Agrobacterium-mediated transformation of mature seed-derived embryogenic callus. Seed-derived calli were infected and co-cultured with Agrobacterium EHA101 carrying standard binary vector pIG121Hm encoding the hygromycin phosphotransferase (HPT), neomycin phosphotransferase II (NPTII) and intron-containing $\beta$-glucuronidase (intron-GUS) genes in the T-DNA region. The effects of several factors on transformation and the expression of the GUS gene were investigated. Inclusion of $200\mu\textrm{M}$ acetosyringone (AS) in inoculation and co-culture media lead to a increase in stable transformation efficiency. Transformation efficiency was increased when embryogenic calli were co-cultured for 5 days on the co-culture medium. The highest transformation efficiency was obtained when embryogenic calli were inoculated with Agyobacterium in the presence of 0.1% Tween20 and $200\mu\textrm{M}$ AS. Hygromycin resistant calli were developed into complete plants via somatic embryogenesis. GUS histochemical assay and Southern blot analysis of transgenic plants demonstrated that transgenes were successfully integrated into the genome of tall fescue.

우용유전자 도입을 통한 신품종 톨페스큐를 개발할 목적으로 Agrobacterium을 이용한 효율적인 형질전환 체계를 확립하였다 톨페스큐 성숙종자 유래의 캘러스를 standard binary vector인 pIG121Hm을 가지는 Agrobacterium EHA101을 이용하여 감염시킨 후 공동배양하여 형질전환시켰다. Agrobacterium을 이용한 형질전환에 있어서 중요한 인자로 작용하는 몇 가지 요인에 대한 톨페스큐 캘러스의 형질전환 효율을 GUS 유전자의 발현정도로 조사하였다. Agrobacterium 감염시에 접종배지와 공동배양배지에 $200\mu\textrm{M}$의 acetosyringone(AS)을 첨가해 주었을 때 형질전환 효율이 증가 되었으며, 공동배양기간을 5일까지 증가시켰을 때 형질전환효율이 증가되었다. 또한 Agrobacterium 감염시에 $200\mu\textrm{M}$의 AS와 0.l%의 Tween20을 동시에 첨가해 주었을 때 가장 높은 형질전환 효율을 나타내었다. 50 mg/L.의 hygromycin이 첨가된 선발배지에서 살아남은 캘러스로부터 정상적인 식물체가 재분화 되었으며 이들 형질전환체를 GUS 염색과 Southern blot 분석을 실시하여 본 결과 발현백터의 T-DNA 영역이 형질전환 식물체의 genome에 성공적으로 도입되었음을 확인할 수 있었다. 본 연구를 통하여 확립된 효율적인 형질전환 시스템은 분자육종을 통한 신품종 톨페스큐의 개발에 유용하게 이용될 수 있을 것이다.

Keywords

References

  1. Arencibia, A. D., E. R. Carmona, P. Tellez, M. -T. Chan, S. -M. Yu, L. E. Trujillo, and P. Oramas. 1998. An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res. 7 : 213-222 https://doi.org/10.1023/A:1008845114531
  2. Bettany, A. J. E., S. J. Dalton, E. Timms, B. Manderyck, M. S. Dhanoa, and P. Morris. 2002. Agrobacterium tumefaciens-mediatedtransformation of Festuca arundinacea and Lolium multiflorum. Plant Cell Rep. 21: 437-444.
  3. Buckner, R. C., J. B. Powell, and R. V. Frakes. 1979. Historical development. In: Buckner RC, Bush LP(eds) Tall Fescue. Agronomy 20: 1-8. Maidison, WI, USA. American Society of Agronomy
  4. Cheng, M., J. E. Fry, S. Pang, H. Zhou, C. M. Hironaka, D. R. Duncan, T. W. Conner, and Y. Wan. 1997. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 115: 971-980
  5. Cho, M. J., C D. Ha, and P. G. Lemaux. 2000. Production of transgenic tall fescue and red fescue plants by particle bombardment of mature seed-derived highly regenerative tissues. Plant Cell Rep. 19 : 1084-1089 https://doi.org/10.1007/s002990000238
  6. Dalton, S. J., A. J. E. Bettany, E. Timms, P. Morris. 1998. Transgenic plants of Lolium multiflorum, Lolium perenne, Festuca arundinacea and Agrostis stolonifera by silicon carbide fibre-mediated ransformation of cell suspension cultures. Plant Sci. 132: 31-43 https://doi.org/10.1016/S0168-9452(97)00259-8
  7. Dalton, S. J., A. J. E. Betanny, E. Timms, and P. Morris. 1999. Cotransformed, diploid Lolium perenne, Lolium multiflorum and Lolium temulentum plants produced by microprojectile bombardment. Plant Cell Rep. 18 : 721-726 https://doi.org/10.1007/s002990050649
  8. DeBondt, A., K. Eggennont, P. Druart, M. De Vii, I. Goderis, J. Vanderleyden, and W. Broekaert. 1994. Agrobacterium-mediated transformation of apple:an assesment of factors affecting gene transfer efficiency during early transformation steps. Plant Cell Rep. 13 : 587-593
  9. Fieser, B. G. and E. S. Vanzant. 2004. Interactions between supplement energy source and tall fescue hay maturity on forage utilization by beefsteers. J. Animal Sci. 82 : 307-318
  10. Hiei, Y., S. Ohta, T. Komari, and T. Kumasiro. 1994. Efficient transformationof rice mediated by Agrobacterium and sequence analysis of the boundaries oft he T-DNA. Plant J. 6 : 271-282 https://doi.org/10.1046/j.1365-313X.1994.6020271.x
  11. Ishida, Y., H. Saito, S. Ohta, Y. Hiei, T. Komari, and T. Kumashiro. 1996. High efficiency of transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnol. 14: 745-750 https://doi.org/10.1038/nbt0696-745
  12. Jefferson, R. A. 1987. Assay chimeric genes in plant: the GUS gene fusion system. Plant Mol. BioI. Rep. 5 : 387-405 https://doi.org/10.1007/BF02667740
  13. Kaui B., S. J. Dalton, A. J. E. Bettany, and P. Morris. 1999. Regeneration of fertile transgenic tall fescue plants with a stable highly expressed foreign gene. Plant Cell Tiss. Org. Cult. 58 : 149-154 https://doi.org/10.1023/A:1006340001405
  14. Komari, T. 1990. Transformation of callus cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542. Plant Cell Rep. 9 : 303-306
  15. Santarem, E. R., H. N. Trick, j. S. Essig, j. j. Finer. 1998. Sonicationassited Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Rep. 17 : 752-759 https://doi.org/10.1007/s002990050478
  16. Sieper, D. A. 1985. Breeding tall fescue. J. Plant Breeding Rev. 3 : 313-342
  17. Spangenberg, G., Z. Y. Wang, and I. Potrykus. 1998. Biotechnology in forage and turf grass improvement. In: Frankel et al. (Eds), Monographs on theoretical and applied genetics, Vol. 23, Springer Verlag, Heidelberg, p. 192-211
  18. Suzuki, S. and M. Nakano. 2002. Agrobacterium-mediated production of transgenic plants of Muscari armeniacum Leichtl. ex Bak. Plant Cell Rep. 20 : 835-841 https://doi.org/10.1007/s00299-001-0405-0
  19. Tingay, S., D. McElroy, R. Kalla, S. Fieg, M. Wang, S. Thronton, and R. Brettell. 1997. Agrobacterium tumefaciens-mediated barley transformation. Plant J. 11 : 1369-1376 https://doi.org/10.1046/j.1365-313X.1997.11061369.x
  20. Trifonova, A., S. Madsen, AND A. Olesen. 2001. Agrobacteriummediated transgene delivery and integration into barley under a range of in vitro culture conditions. Plant Sci. 162 : 871-880
  21. Usami, S., S. Morikawa, I. Takabe, and T. Machida. 1987. Absence in monocotyledonous plants of the diffusible plant factors inducing T-DNA circularization and vir gene expression in Agrobacterium. Mol. Gen. Genet. 209 : 221-226 https://doi.org/10.1007/BF00329646
  22. Van Wijk, A. J. P., J. G. Boonman, and W. Rumball. 1993. Achievements and prospectives in the breeding of forage grasses and legumes. In: Baker, M. J. (Eds), Grasslands for our world, SIR, Wellington, p. 116-120
  23. Wu, H., C. Sparks, B. Amoah, and H. D. Jones. 2003. Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep. 21 : 659-668
  24. Zhao, Z. -Y., T. Cai, L. Tagliani, M. Miller, N. Wang, H. Pang, M. Rudert, S. Schroeder, D. Hondred, J. Seltzer, and D. Pierce. 2000. Agrobacterium-mediated sorghum transformation. Plant Mol. BioI. 44 : 789-798 https://doi.org/10.1023/A:1026507517182