Rapid Typing of Clinical Strains of Mycobacterium tuberculosis by IS6110-based Outward PCR

  • Kim, Yeun (Department of Life Science, College of Liberal Arts and Science, Yonsei University) ;
  • Lee, Uen-Ho (Department of Life Science, College of Liberal Arts and Science, Yonsei University) ;
  • Park, Young-Kil (Department of Microbiology, Korean Institute of Tuberculosis, The Korean National Tuberculosis Association) ;
  • Bai, Gill-Han (Department of Microbiology, Korean Institute of Tuberculosis, The Korean National Tuberculosis Association) ;
  • Cho, Sang-Nae (Department of Microbiology, Yonsei University College of Medicine) ;
  • Lee, Hye-Young (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University)
  • Published : 2004.06.01

Abstract

Worldwide, tuberculosis remains one of the leading infectious diseases, accounting for nearly 3 million deaths and more than 8 million new cases annually. DNA typing of Mycobacterium tuberculosis is important for the control of tuberculosis, since it can be used to track transmission route of tuberculosis, source of internal laboratory contaminations, and to answer questions on the nature of tuberculosis infections such as reactivation or exogenous reinfection of disease. At present, IS6110-based RFLP is the choice of method for typing large numbers of clinical isolates of M. tuberculosis, since it has the highest resolution power. However, RFLP requires long time, high cost and qualified experts, so only reference level laboratories can use the RFLP technique. In order to have an optional molecular typing method suitable for the clinical settings, this study evaluated the use of one of PCR-based typing methods, IS6110-based outward PCR for typing clinical isolates of M. tuberculosis. In brief, the results from this study showed that IS6110-based RFLP is useful to discriminate diverse clinical isolates of M. tuberculosis as well as to identify clinical isolates that belong to the same family or cluster groups that have been previously classified by RFLP analysis. In addition, the banding profiles resulted from IS6110-based outward PCR seemed to represent genomic characteristics of M. tuberculosis, since strains belong to the K-family generated unique band that is not present in any other strains but present only in the genome of K-family strains. The IS6110-based outward PCR was also shown to be useful with DNAs isolated directly from liquid cultures indicating this method can be suitable for typing M. tuberculosis in clinical settings.

Keywords