The Effect of Low Intensity Ultrasound on Osteoblast Activation

저강도 초음파가 조골세포 활성에 미치는 영향

  • 홍성민 (경희대학교 동서의학대학원 의료공학 전공) ;
  • 한승무 (경희대학교 동서의학대학원 의료공학 전) ;
  • 한은옥 (이화여자대학교 보건교육학) ;
  • 임사비나 (경희대학교 한의과대학 경혈학교) ;
  • 김창주 (경희대학교 의과대학 생리학교실)
  • Published : 2004.06.01

Abstract

The bone formation and re-formation are regulated by two factors that are the synthesis of bone matrix by osteoblast and reabsorption by osteoclast. Recently, there are many studies about regeneration and healing of bone tissue by activation of osteoblast. In general, it is known that the activation of osteoblast is influenced by not only biological stimulus but physical stimulus. In this study, we verified that ostoeblast activation was influenced by low intensity ultrasound. Various ultrasonic properties were used to find out the most appropriate condition on cell activation. From this study, we could confirm that 0.3W/$\textrm{cm}^2$ intensity of ultrasound was the most appropriate to tell activation over whole duty cycles and the increasing rate of tell was the highest at 50% duty cycle. Thus, it is expected that optimal ultrasonic characteristics on regeneration of bone matrix may be applied to fracture and osteoporosis healing.

뼈의 형성과 재형정은 조골세포에 의한 골기질의 합성과 파골세포에 의한 재흡수에 의해 조절된다. 최근에는 골형성세포의 활성화를 통한 골조직의 재생 및 치유에 대한 연구가 활발히 이루어지고 있다. 골형성 세포의 활성화는 생물학적 자극뿐만 아니라 물리적 자극에 의해서도 영향을 받는 것으로 알려져 있다. 본 연구에서는 물리적 자극 가운데에서 연구가 거의 되지 않은 저강도 초음파가 골형성 세포의 활성에 미치는 영향을 조사하였다. 이를 위하여 우선 다양한 특성의 초음파를 사용함으로써 세포활성에 미치는 최적의 초음파 조건을 결정하였다 본 연구 결과 전체 duty cycle에서 초음파 강도가 0.3W/$\textrm{cm}^2$일 경우가 세포활성에 가장 적합하며 duty cycle 50%인 경우 최고의 세포수 증가율을 나타내었다. 이와 같이 골조직의 재생에 적합한 초음파의 특성을 결정하여 골절 및 골다공증의 치료에 초음파를 활용할 수 있을 것으로 사료된다.

Keywords

References

  1. Immunology Today v.21 Osteoprotegerin ligand: a regulator of immune responses and bone physiology Young-Yun Kong;William J. Boyle;Josef M. Penninger
  2. Am J Phys Med v.37 Biologic effects of ultrasound Baldes EJ;Herrick JF;Stroebel CF
  3. Biological Effects of Ultrasound Nyborg WL;Ziskin MC
  4. Ultrasound Med Biol v.16 The biomechanical effects of low-intensity ultrasound on healing tendons Enwemeka CS;Rodriguez O;Mendos S https://doi.org/10.1016/0301-5629(90)90044-D
  5. J Bone Joint Surg v.76 Acceleration of tibia fracture-healing by non-invasive low intesity pulsed ultrasound Heckman JD(et al.) https://doi.org/10.2106/00004623-199401000-00004
  6. Ultrasound Symposium Ultrasound hyperthermia system for breast cancer treatment Burdette EC;Svenson GK;Lu X-Q(et al.)
  7. Ultrasound, It's Chemical, Physical, and Biological Effect Suslick KS(ed.)
  8. Arch Orthop Trauma Surg v.101 The stimulation of bone growth by ultrasound Duarte LR. https://doi.org/10.1007/BF00436764
  9. Clinical Orthopaedic and Related Research v.355S Enhancement of fracture healing by low intensity ultrasound Hadjiargyrou M;McLeod K;Ryaby JP;Rubin C https://doi.org/10.1097/00003086-199810001-00022
  10. Ultrasound Med Biol v.16 The biomechanical effects of low-intensity ultrasound on healing tendons Enwemeka CS;Rodriguez O;Mendosa S https://doi.org/10.1016/0301-5629(90)90044-D
  11. Americal J of Sports Medicine v.27 Effects of therapeutic ultrasound on the regeneration of skeletal myofibers after experimental muscle injury Rantanen J;Thorsson O;Wollmer P;Hurme T;Kalimo H https://doi.org/10.1177/03635465990270011701
  12. Ultasound Med Biol v.21 Effects of therapeutic ultrasound on the endochondral ossification Wiltink A;Nijweide PJ;Oosterbaan WA;Hekkenberg RT;Helders PJM https://doi.org/10.1016/0301-5629(94)00092-1
  13. CMAJ v.166 The effect of low-intensity pulsed ultrasound therapy on time to fracture healing: A meta-analysis Busse JW(et al.)
  14. Clin Orthop v.337 Accleration of tibia and distal radius fracture healing in patients who smoke Cook SD(et al.) https://doi.org/10.1097/00003086-199704000-00022
  15. J Bone Joint Surg v.79A Accelerated healing of distal radial fractures with the use of specific, low intensity ultrasound Kristiansen TK(et al.)
  16. Phys Med Biol v.34 The significance of membrane changes in the safe and diffective use of therpeutic and diagnostic ultrasound Dinno M;Dyson M;Young S(et al.) https://doi.org/10.1088/0031-9155/34/11/003
  17. Ultasound Med Biol no.SUP.2 Stimulation of bone repair by ultrasound Dyson B;Brookes M
  18. Phy. Ther v.75 In vitro effects of therapeutic ultrasound on the nucleus of human fibroblasts De Deyne, P.G.;M. Kirsh-Volders https://doi.org/10.1093/ptj/75.7.629
  19. The Journal of the Korean Society of Fracture v.11 Stimulation of fracture healing by low intensity pulsing ultrasound Yang KH;Choi CH;Cho JH
  20. Nat. Acad. Sci. v.71 A restriction point for control of normal animal cell proliferation Pardee AB https://doi.org/10.1073/pnas.71.4.1286
  21. Harrison's Principles of Internal Medicine Braunwald E;Isselbacher KJ;Petersdorf RG(et al.)(eds.)
  22. FASEB J v.4 Relationship of cell growth to the regulation of tissue specific gene expression during osteoblast differentiation Stein GS;Lian JB;Owen TA
  23. J Cell Comp Physical v.62 no.SUP. Differential sensitivity of the cell life cycle Tolmach LJ;Lajtha LG;Smith CL(et al.) https://doi.org/10.1002/jcp.1030620413
  24. Cell Tissue Kinet v.3 On the existence of a $G_0$ phase inthe cell cycle Burns FJ;Tannock IF
  25. Handbook of the biology of Aging Cell division and the cell cycle Baserga RL;Finch, CE(ed.);Hayflick, L(ed.)
  26. Science v.132 The growth fraction-A new concept applied to tumors Mendelsohn ML
  27. Biol Rev v.43 The fibroblast and wound repair Ross R https://doi.org/10.1111/j.1469-185X.1968.tb01109.x
  28. Ann Surg v.165 Rate of chondroitin sulfate formation in wound healing Bentley JP https://doi.org/10.1097/00000658-196702000-00004