알칼리성 Cellulase를 생산하는 호알칼리성 Bacillus sp. HSH-810의 분리 및 효소 특성

Isolation and Characterization of an Alkaline Cellulase Produced by Alkalophilic Bacillus sp. HSH-810

  • 김지연 (인제대학교 유전체연구소) ;
  • 허성호 (동의공업대학 식품생명과학) ;
  • 홍정화 (인제대학교 의생명공학대학 식품생명과학부)
  • 발행 : 2004.06.01

초록

일반 토양과 부엽토, 퇴비로부터 alkaline cellulase 생성이 우수한 균주를 분리한 후 형태적, 배양학적 및 생화학적 동정을 실시한 결과 호알칼리성 Bacillus sp. HSH-810 균주인 것으로 판명되었다. 분리균 Bacillus sp. HSH-810의 생육과 효소 활성은 $30^{\circ}C$와 pH 10.0에서 가장 높은 것으로 나타났다. 본 균주는 배지 중에 탄소원과 질소원, 무기염으로 1.0%의 CMC와 0.5%의 peptone, 0.02%의 $CaC1_2$, $CoC1_2$를 사용하였을 경우 최대의 alkaline cellulase생산성을 나타내었다. 효소의 최적 활성 pH와 온도는 각각 10.5와 $50^{\circ}C$였다. 이 효소는 pH 6.0-13.0과 $50^{\circ}C$의 온도에서 매우 안정하였다. 효소액에 계면활성제를 첨가하여 효소 활성을 측정한 결과, 효소액은 sodium-$\alpha$-olefin sulfonate (AOS)와 sodium dodecyl sulfonate (SDS), Tween 20, Tween 80에 대하여 안정성 이 높은 특징을 보였으나 0.1%의 linear alkyl-benzene sulfonate (LAS)를 첨가한 경우에는 효소 활성이 심하게 저해되었다.

A bacterium producing alkaline cellulase was isolated from soil, leaf mold and compost, and was identified as alkalophilic Bacillus sp. HSH-810 by morphological, cultural and biochemical determination. The optimum cul-ture condition of Bacillus sp. HSH-810 for the growth and alkaline cellulase production was $30^{\circ}C$ and pH 10.0. The maximum alkaline cellulase production was obtained when 1.0%(w/v) CMC, 0.5%(w/v) peptone, 0.02%(w/v) $CaCl_2$ and 0.02(w/v) $CoCl_2$ were used as carbon source, nitrogen source and mineral source, respectively. The optimum pH and temperature of the enzyme activity were pH 10.5 and $50^{\circ}C$, respectively. This enzyme was fairly stable in the pH range of 6.0-13.0 and at $50^{\circ}C$. For the effect of surfactants, the activity of alkaline cellulase was stable in the presence of sodium-$\alpha$-olefin sulfonate (AOS), sodium dodecyl sulfonate (SDS), Tween 20 and Tween 80, but inhibited by the presence of 0.1 linear alkyl-benzene sulfonate (LAS) sig-nificantly.

키워드

참고문헌

  1. Agric. Biol. Chem. v.52 Characterization of β-mannosidase of an alkalophilic Bacillus sp Akino,T.;N.Nakamura;K.Horikoshi https://doi.org/10.1271/bbb1961.52.1459
  2. Enzyme. Microb. Technol. v.3 Biodegradation of cellulosic material:substrates, microorganisms,enzymes and products Bisaria,V.S.;T.K.Ghose https://doi.org/10.1016/0141-0229(81)90066-1
  3. Bergey's Manual of Systematic Bacteriology v.2 Genus Bacillus Claus,D.;R.C.W.Berkeley;P.H.A.Sneath(ed.);N.S.Mair(ed.);M.E.Sharpe(ed.);J.G.Holt(ed.)
  4. Agric. Biol. Chem. v.52 Production and purification of new maltohexose-forming amylases from alkalophilic Bacillus sp. H-167 Hayashi,T.;T.Akiba;K.Horikoshi https://doi.org/10.1271/bbb1961.52.443
  5. Agric. Biol. Chem. v.35 no.22 Production of alkaline enzymes by alkalophilic microorganisms. Part I . Alkaline protease produced by Bacillus Horikoshi,K. https://doi.org/10.1271/bbb1961.35.1407
  6. Can. J. Microbiol. v.30 Cellulases of an alkalophilic Bacillus strain isolated from soil Horikoshi,K.;M.Nakao;Y.Kurono;N.Sashihara https://doi.org/10.1139/m84-118
  7. Alkalophilic microorganism : A new microbial world Horikoshi,K.;T.Akiba
  8. Biochem. Biophys. Acta v.384 no.221 Production of β-1,3-glucanase by Bacillus No.221 an alkalophili microorganism Horikoshi,K.;Y.Atsukawa https://doi.org/10.1016/0005-2744(75)90048-0
  9. Agric. Biol. Chem. v.54 Manganase ion-dependent production of phosphodiesterase by alkalophilic Bacillus No. A-40-2 and its properties Ikura,Y.;K.Horikoshi https://doi.org/10.1271/bbb1961.54.3205
  10. Agric. Biol. Chem. v.53 Alkaline cellulase for laundry detergents: production by Bacillus sp. KSM-635 and enzymatic properties Ito,S.;S.Shikata;K.Ozaki;S.Kawai;K.Okamto;S.Inone;A.Takei;Y.Ohta;T.Satoh https://doi.org/10.1271/bbb1961.53.1275
  11. Bergey's Manual of Determinative Bacteriology(9th ed.) John,G.H.;N.R.Krieg;P.H.A.Sneath
  12. Agric. Biol. Chem. v.52 Neutropholic Bacillus strain,KSM-522, that produces an alkaline carboxymethl cellulase Kawai,S.;H.Okoshi;K.Ozaki;S.Shikata;K.Ara;S.Ito https://doi.org/10.1271/bbb1961.52.1425
  13. J. Bacteriol. v.131 Sodium ion-stimulate α-[$I^14$C]aminoisobutyric acid uptaake in alkalophilic Bacillus species Kitada,M.;K.Horikoshi
  14. FEMS Lett v.72 $Na^+$-dependent uptake of amino acids by an alkalophilic Bacillus Koyama,N.;A.Kiyomiya;Y.Nosoh
  15. Agri. Biol. Chem. v.47 Effect of pH and sodium ion on germination of alkalophilic Bacillus sp Kudo,T.;K.Horikoshi https://doi.org/10.1271/bbb1961.47.665
  16. Biochemical tests for identification of medical bacteria(2nd ed.) Macfaddin,J.F.
  17. Anal. Chem. v.31 Use of dinitrosalicylic acid reagent for determination of reducing sugar Miller,G.L. https://doi.org/10.1021/ac60147a030
  18. Agric. Biol. Chem. v.50 Purification and characterization of cyclodextrin glucanotransferase from an alkalophilic bacterium of Taiwan Nomoto,M.;C.C.Chen;D.C.Sheu https://doi.org/10.1271/bbb1961.50.2701
  19. Agric. Biol. Chem. v.52 Purification and characterization of extracellular alkaline phosphatase from an alkalophilic bacterium Nomoto,M.;M.Ohsawa;H.L.Wang;C.C.Chen;K.W.Yeh https://doi.org/10.1271/bbb1961.52.1643
  20. Agric. Biol. Chem. v.49 Purification and characterization of xylanases from alkalophilic thermophilic bacillus sp Okazaki,K.;T.Akiba;K.Horikoshi;R.Akahoshi https://doi.org/10.1271/bbb1961.49.2033
  21. Agric. Biol. Chem. v.54 Alkaline cellulases for laundry detergents: production by alkalophilic strains of Bacillus and some properties of the crude enzymes Shikata,S.K.;Saeki,H.;Okoshi,T.;Yoshimatsu,K.;Ozaki,S.;Kawai;S.Ito https://doi.org/10.1271/bbb1961.54.91
  22. Agric. Biol. Chem. v.55 Purification and properties of galactanases from alkalophilic Bacillus sp. S-2 and S-39 Tsumura,K.;Y.Hashimoto;T.Akiba;K.Horikoshi https://doi.org/10.1271/bbb1961.55.1265