Pigment Reduction to Improve Photosynthetic Productivity of Rhodobacter sphaeroides

  • Kim, Nag-Jong (Institute of Industrial Biotechnology, Department of Biotechnology, Inha University) ;
  • Lee, Jeong-Kug (Department of Life Science, Sogang University) ;
  • Lee, Choul-Gyun (Institute of Industrial Biotechnology, Department of Biotechnology, Inha University)
  • Published : 2004.06.01

Abstract

Improving the light utilization efficiency of photosynthetic cells in photobioreactors (PBRs) is a major topic in algal biotechnology. Accordingly, in the current study we investigated the effect and suitability of photosynthetic pigment reduction for improving light utilization efficiency. The light-harvesting complex II (LH-II) genes of Rhodobacter sphaeroides were removed to construct a mutant strain with less pigment content. The mutant strain exhibited a slower growth rate than the wild-type under a low light intensity, while the mutant grew faster under a high light intensity. In addition, the specific absorption coefficient was lower in the mutant due to its reduced pigment content, thus it seemed that light penetrated deeper into its culture broth. However, the distance (light penetration depth) from the surface of the PBR to the compensation point did not increase, due to an increase in the compensation irradiance of the mutant strain. Experimental data showed that a reduced photosynthetic pigment content, which lessened the photoinhibition under high-intensity light, helped the volumetric productivity of photosynthetic microorganisms.

Keywords

References

  1. Microbial Reactions. Growth kinetics of photosynthetic microorganisms Aiba,S.;S.Aiba(ed.);H.W.Doelle(ed.);K.N.Ewings(ed.);L.T.Fan(ed.);M.M.Gharpuray(ed.);N.W.Hollywood(ed.);K.J.Lee(ed.);Y.H.Lee(ed.);P.L.Rogers(ed.);M.L.Skotnicki(ed.);D.E.Tribe(ed.)
  2. Energy Convers. Mgmt. v.38 /$CO_{2}$ mitigation with microalgae systems Benemann,J.R. https://doi.org/10.1016/S0196-8904(96)00313-5
  3. J. Appl. Phycol. v.12 Hydrogen production by microalgae Benemann,J.R. https://doi.org/10.1023/A:1008175112704
  4. J. Bacteriol. v.181 How photosynthetic bacteria harvest solar energy Cogdell,R.J.;N.W.Isaacs;T.D.Howard;K.Mcliskey;N.J.Fraser;S.M.Prince
  5. TIBTECH v.16 Can photosynthesis provide a 'biological blueprint' for the design of novel solar cells? Cogdell,R.T.;J.G.Lindsay https://doi.org/10.1016/S0167-7799(98)01208-6
  6. J. Cell. Comp. Physiol. v.49 Kinetic studies of pigment synthesis by non-sulfur purple bacteria Cohen-Bazire, G.;W.R.Sistrom;R.Y.Stanier https://doi.org/10.1002/jcp.1030490104
  7. Anoxygenic Photosynthetic Bacteria. Structure, molecular organization, and biosynthesis of membranes of puple bacteria Drews,G.;J.R.Golecki;R.E.Blankenship(ed.);M.T.Madigan(ed.);C.E.Bauer(ed.)
  8. J. Biotechnol. v.70 Substrate consumption rates for hudrogen production by Rhodobacter sphaeroides in a colimn photobioreactor Eroglu,I.;K.Aslan;U.Gunduz;M.Yucel;L.Turker https://doi.org/10.1016/S0168-1656(99)00064-4
  9. Algal Photosynthesis. The photosynthesis-light response curve Geider,R.J.;B.A.Osborne
  10. Anoxygenic Photosynthetic Bacteria. Ecology of phototrophic sulfur bacteria Gemerden,H.V.;J.Mas;R.E.Blankenship(ed.);M.T.Madigan(ed.);C.E.Bauer(ed.)
  11. Water Res. v.13 Outdoor algal mass cultures - II. Photosynthetic yield limitations Goldman,J.C. https://doi.org/10.1016/0043-1354(79)90083-6
  12. Q. Rev. Biophys. v.35 Photosynthetic apparatus of purple bacteria Hu,X;T.Ritz;A.Damjanovic;F.Autenrieth;K.Schulten
  13. J. Phys. Chem. v.B101 Pigment organization and transfer of electronic excitation in the Photosynthetic unit of purple bacteria Hu,X.;T.Ritz;A.Damjanovic;K.Schulten
  14. Phys. Today v.50 How nature harvests sunlight Hu,X.;K.Schulten
  15. Anoxygenic Photosynthetic Bacteria. Genetic manipulation of the antenna complexes of purple bacteria Hunter,C.N.;R.E.Blankenship(ed.);M.T.Madigan(ed.);C.E.Bauer(ed.)
  16. Biotechnol. Bioprocess Eng. v.6 A theoretical consideration on oxygen production rate in microalgal cultures Kim,N.J.;C.G.Lee https://doi.org/10.1007/BF02933005
  17. Biotechnol. Bioprocess Eng. v.4 Calculation of light penetration depth in photobioreactors Lee,C.G. https://doi.org/10.1007/BF02931920
  18. J. Appl. Phycol. v.13 Microalgal mass culture systems and methods: Their limitation and potential Lee,Y.K. https://doi.org/10.1023/A:1017560006941
  19. J. Microbiol. Biotechnol. v.9 Role of OrfQ in formation of light-harvesting complex of Rhodobacter sphaeroides under light-limiting photoheterotrophic conditions Lim,S.K.;I.H.Lee;J.K.Lee
  20. J. Biol. Chem. v.253 Intracytoplasmic membrane synthesis in synchronous cell populations of Rhodopseudomonas sphaeroides Lueking,D.R.;R.T.Fralely;S.Kaplan
  21. Anoxygenic Photosynthetic Bacteria. Taxonomy, physiology and ecology of Heliobacteria Madigan,M.T.;J.G.Ormerod(ed.);R.E.Blankenship(ed.);M.T.Madigan(ed.);C.E.Bauer(ed.)
  22. Biotechnol. Bioeng. v.69 Investigation of photobioreactor design for enhancing the Photosynthetic productivity of microalgae Morita,M.;Y.Watanabe;H.Saiki https://doi.org/10.1002/1097-0290(20000920)69:6<693::AID-BIT14>3.0.CO;2-0
  23. J. Ferment. Bioeng. v.80 Light penetration into cell suspensions of Photosynthetic bacteria and relation to hydrogen production Nakada,E.;Y.Asada;T.Arai;J.Miyake https://doi.org/10.1016/0922-338X(95)98176-L
  24. J. Appl. Phycol. v.10 Reduced photoinhibition of a phycocyanin-deficient mutant of Synechocystis PCC 6714 Nakajima,Y.;M.Tsuzuki;R.Ueda
  25. J. Appl. Phycol. v.13 Improved productivity by reduction of the content of light-harvesting pigment in Chlamydomonas perigranulata Nakajima,Y.;M.Tsuzuki;R.Ueda https://doi.org/10.1023/A:1011192832502
  26. J. Appl. Phycol. v.9 Improvement of photosythesis in dense microalgal suspension by reduction of light harvesting pigments Nakajima,Y.;R.Ueda
  27. J. Appl. Phycol. v.11 Improvement of microalgal photosythetic productivity by reducing the content of light harvesting pigment Nakajima,Y.;R.Ueda https://doi.org/10.1023/A:1008015224029
  28. J. Appl. Phycol. v.12 The effect of reducing light-harvesting pigment on marine microalgal productivity Nakajima,Y.;R.Ueda https://doi.org/10.1023/A:1008108500409
  29. Plant Cell Physiol. v.39 Growth, pigmentation, and expression of the puf and puc operons in a light-responding-repressor (SPB)-disrupted Rhodobacter sphaeroides Nishimura,K.;H.Shimada;S.Hatanaka;H.Mizoguchi;H.Ohta;T.Masuda;K.I.Takamiya https://doi.org/10.1093/oxfordjournals.pcp.a029384
  30. Trends Plant Sci. v.1 A model for the Photosynthetic apparatus purple bacteria Papiz,M.Z.;S.M.Prince;A.M.Hawthornthwaite-Lawless;G.McDermott;A.A.Freer;N.W.Isaacs;R.J.Cogdell https://doi.org/10.1016/1360-1385(96)20005-6
  31. Chemphyschem. v.3 The quantum physics of photosynthesis Ritz,T.;A.Damjanovi;K.Schulten https://doi.org/10.1002/1439-7641(20020315)3:3<243::AID-CPHC243>3.0.CO;2-Y
  32. J. Phys. Chem. v.B105 Kinetics of excitation migration and trapping in the Photosynthetic unit of purple bacteria Ritz,T.;S.Park;K.Schulten
  33. Biotechnol. Bioeng. v.30 Potential enhancement of Photosynthetic energy conversion in algal mass culture Sukenik,A.;P.G.Falkowski https://doi.org/10.1002/bit.260300808
  34. Anoxygenic Photosynthetic Bacteria. Kinetics of excitation transfer and trapping in purple bacteria Sundstrom,V.;R.V.Grondelle;R.E.Blankenship(ed.);M.T.Madigan(ed.);C.E.Bauer(ed.)
  35. A Biology of the Algae(3rd Ed.) Sze,P.
  36. Photosynth. Res. v.60 Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: A different perspective Tabita,F.R. https://doi.org/10.1023/A:1006211417981
  37. FEMS Microbiol. Lett. v.146 Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: A molecule for phylogenetic and enzymological investigation Watson,G.M.F.;F.R.Tabita https://doi.org/10.1111/j.1574-6968.1997.tb10165.x
  38. J. Biotechnol. v.70 Identification of by-products in hydrogen producing bacteria; Rhodobacter sphaeroides O.U. 001 grown in the waste water of a sugar refinery Yigit,D.O;U.Gunduz;L.Turker;M.Yucel;I.Eroglu https://doi.org/10.1016/S0168-1656(99)00066-8
  39. Science v.292 Trophic conversion of an obligate photoautotrophic organism through metabolic engineering Zaslavskaia,L.A.;J.C.Lippmeier;C.Shih;D.Ehrhardt;A.R.Grossman;K.E.Apt https://doi.org/10.1126/science.160015