The Estimation of the Transform Parameters Using the Pattern Matching with 2D Images

2차원 영상에서 패턴매칭을 이용한 3차원 물체의 변환정보 추정

  • 조택동 (충남대학교 기계설계공학과) ;
  • 이호영 (충남대학교 기계설계공학과 대학) ;
  • 양상민 ((주)한빛파워서비스 기술연구소)
  • Published : 2004.07.01

Abstract

The determination of camera position and orientation from known correspondences of 3D reference points and their images is known as pose estimation in computer vision or space resection in photogrammetry. This paper discusses estimation of transform parameters using the pattern matching method with 2D images only. In general, the 3D reference points or lines are needed to find out the 3D transform parameters, but this method is applied without the 3D reference points or lines. It uses only two images to find out the transform parameters between two image. The algorithm is simulated using Visual C++ on Windows 98.

Keywords

References

  1. Liu, Y., Huang, T. S. and Faugeras, O. D., 'Determination of Camera Location from 2-D to 3-D Line and Point Correspondences,' IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No. 1, pp. 28-37, 1990 https://doi.org/10.1109/34.41381
  2. Quan, L. and Lan, Z., 'Linear N-Point Camera Pose Determination,' IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 21, No. 8, pp. 774-780, 1999 https://doi.org/10.1109/34.784291
  3. Lu, C. P., Hager, G. D. and Mjolsness, E., 'Fast and Globally Convergent Pose Estimation from Video Images,' IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 6, pp. 610-616, 2000 https://doi.org/10.1109/34.862199
  4. Ansar, A. and Daniilidis, K., 'Linear Pose Estimation from Points and Lines,' IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, No. 5, pp. 578-589, 2003 https://doi.org/10.1109/TPAMI.2003.1195992
  5. Dornaika, F. and Garcia, C., 'Pose Estimation using Point and Line Correspondences,' Real-Time Imaging, Vol. 5, pp. 215-230, 1999 https://doi.org/10.1006/rtim.1997.0117
  6. Joseph, S. H., 'Optimal Pose Estimation in Two and Three Dimensions,' Computer Vision and Image Understanding, Vol. 73, No. 2, pp. 215-231, 1999 https://doi.org/10.1006/cviu.1998.0733
  7. Liu, M. L. and Wong, K. H., 'Pose estimation using four corresponding points,' Pattern Recognition Letters, Vol. 20, pp. 69-74, 1999 https://doi.org/10.1016/S0167-8655(98)00128-7
  8. Or, S. H., Luk, W. S., Wong, K. H. and King, I., 'An efficient iterative pose estimation algorithm,' Image and Vision Computing, Vol. 16, pp. 353-362, 1998 https://doi.org/10.1016/S0262-8856(97)00073-5
  9. Wlczek, P., Maccato, A. and deFigueiredo, R. J. P., 'Pose Estimation of Three-Dimensional Objects from Single Camera Images,' Digital Signal Processing, Vol. 5, pp. 176-183, 1995 https://doi.org/10.1006/dspr.1995.1018
  10. Lee, H. K., Kim, S. H., Choi, S. K. and Lee, S. R., 'The Optimal Grasp Planning by Using a 3-D Computer Vision Technique,' J. of the KSPE, Vol. 19, No. 11, pp. 54-64, 2002
  11. Chang, S. H., Cheng, F. H., Hsu, W. H. and Wu, G. Z., 'Fast Algorithm for Point Pattern Matching: Invariant to Translations, Rotations and Scale Changes,' Pattern Recognition, Vol. 30, No. 2, pp. 311-320, 1997 https://doi.org/10.1016/S0031-3203(96)00076-3