DOI QR코드

DOI QR Code

Near field scanning optical interferometer using facet reflection of a tapered optical fiber

광섬유 탐침의 반사를 이용한 파면 분석 근접장 주사 광간섭계

  • 유장훈 (연세대학교 이과대학 물리학과) ;
  • 임상엽 (연세대학교 이과대학 물리학) ;
  • 이현호 (연세대학교 이과대학 물리학) ;
  • 박승한 (연세대학교 이과대학 물리학과)
  • Published : 2004.06.01

Abstract

We propose a near- field scanning optical interferometer (NSOI) based on the facet reflection of a nano-sized moveable tapered optical fiber. The interferometer can measure the position and the wave-front of a focused spot simultaneously. The interfering fringes are generated by the reflected beams from the sample surface and from the fiber facet. The wave-front analysis at the focusing position is obtained by using a phase shifting technique with a four-step algorithm. It is found that the resolution for controlling the focal position of our proposed NSOI is less than λ/3 and the measured wave-front aberration at the focal position is in good agreement with the ones obtained by a Twyman-Green interferometer.

광섬유 탐침의 끝 단에서 반사하는 광을 이용하는 근접장 주사 광간섭계를 제안하고 제안한 근접장 주사 광간섭계를 이용하여 초점의 위치와 집광 초점면에서의 파면을 분석하였다. 파면의 분석은 광섬유 탐침의 끝 단에서 반사된 빛과 시료표면에서 반사된 빛을 간섭시키고, 탐침의 끝 단을 λ/4씩 위상천이 시키면서 4장의 간섭무늬를 얻은 후, 위상천이 알고리즘을 통하여 광학 수차를 구하는 방법을 이용하였다. 실험 결과 근접 주사시의 초점의 위치를 파장의 3분의 1 이하로 제어할 수 있음을 알 수 있었으며, 제안한 근접장 주사 광간섭계를 이용하여 구한 집광 초점면에서의 파면 수차 값이 트와이만-그린 간섭계를 이용하여 구한 파면 수차값과 잘 일치함을 확인할 수 있었다.

Keywords

References

  1. Nature v.237 Super-resolution aperture scanning microscope E.A.Ash;G.Nicholls https://doi.org/10.1038/237510a0
  2. Appl. Phys. Lett. v.44 Optical stethoscopy: image recording with resolution 1.20 D.W.Pohl;W.Denk;M.Lanz https://doi.org/10.1063/1.94865
  3. Science v.251 Breaking the diffraction barrier: optical microscopy on a nanometric scale E.Betzig;J.K.Trautmann;T.D.Harris;J.S.Weiner;R.L.Kostelak https://doi.org/10.1126/science.251.5000.1468
  4. Appl. Phys. Lett. v.78 Near-field images of the AgOx-type super-resolution near-field structure W.C.Liu;C.Y.Wen;K.H.Chen;W.C.Lin;D.P.Tsai https://doi.org/10.1063/1.1345832
  5. J. Appl. Phys. v.91 Super-resolution near-field optical disk with an additional localized surface plasmon coupling layer L.P.Shi;T.C.Chong;H.B.Yao;P.K.Tan;X.S.Miao https://doi.org/10.1063/1.1476068
  6. Science v.270 Optical Microfabrication of Chalcolgenide Glasses H.Hisakuni;K.Tanaka https://doi.org/10.1126/science.270.5238.974
  7. Opt. Comm. v.116 Holographic recording and photocontraction of amorphous As2S3 films by 488.0 nm and 514.5 nm laser light illumination O.Salminen;N.Nordman;P.Riihola;A.Ozols https://doi.org/10.1016/0030-4018(95)00076-K
  8. Phys. Rev. Lett. v.85 Direct Observation of Self-Focusing with Subdiffraction Limited Resolution Using Near-Field Scanning Optical Microscope K.Song;J.Lee;J.Kim;K.Cho;S.Kim https://doi.org/10.1103/PhysRevLett.85.3842
  9. Appl. Phys. Lett. v.66 Piezoelectric tip-sample distance control for near field optical microscopes K.Karrai;R.D.Grober https://doi.org/10.1063/1.113340
  10. Appl. Phys. Lett. v.71 Dynamic behavior of tuning fork shear-force feedback A.G.T.Ruiter;J.A.Veerman;K.O. van der Werf;N.F. van Hulst https://doi.org/10.1063/1.119482
  11. Rev. Sci. Instrum. v.71 Fundamental limits to force detection using quartz tuning forks R.D.Grober;J.Acimovic;J.Schuck;D.Hessman;P.J.Kindlemann;J.Hespanha;A.S.Morse;K.Karrai;I.Tiemann;S.Manus https://doi.org/10.1063/1.1150691
  12. Appl. Phys. Lett. v.70 A phase-locked shear-force microscope for distance regulation in near-field optical microscopy W.A.Atia;C.C.Davis https://doi.org/10.1063/1.118318
  13. Rev. Sci. Instrum. v.68 Mechanical oscillator tip-to-sample separation control near-field optical microscopy R.S.Decca;H.D.Drew;K.L.Empson https://doi.org/10.1063/1.1147887
  14. Rev. Sci. Instrum. v.69 Piezoelectric shear force detection: A geometry avoiding critical tip/tuning fork gluing J.Salvi;P.Chevassus;A.Mouflard;S.Davy;M.Spajer;D.Courjon https://doi.org/10.1063/1.1148835
  15. Appl. Phys. Lett. Enhancement of shear-force detection sensitivity using asymmetric response of tuning forks for near-field scanning optical microscopy
  16. Principles of optical disc system B.Bouwhuis, J. Braat;A.Huijser;J.Pasman;G. Van Rosmale;K. Schouhamer Immink
  17. Jpn. J. Appl. Phys. v.37 An optical head with special annular lens for laser disc-compatible digital versatile disc pickup J.Yoo;C.Lee;K.Cho;H.Choi;J.Lee https://doi.org/10.1143/JJAP.37.2184