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EXTENDED DIRECTED TRIPLE SYSTEMS
WITH A GIVEN AUTOMORPHISM

CHUNG JE CHO AND YONG-HYEON HAN

ABSTRACT. An extended directed triple system of order v, denoted
by EDTS(v), is a pair (V,B) where V is a v-set and B is a set
of transitive triples of elements of V such that every ordered pair
of elements of V is contained in exactly one member of 8. We
obtain a necessary and sufficient condition for the existence of cyclic
EDTS(v)s, and when k = 1 or 2, we also obtain a necessary and
sufficient condition for the existence of k-rotational EDTS(v)s.

1. Introduction

A collection of (not necessarily distinct) three objects a, b, c, {a,b,c}
in order, is called a transitive triple (triple or cyclic triple) if it is
a collection of three ordered pairs (a,b), (b,¢),{a,c) (three unordered
pairs {a, b}, {a, c}, {b, c} or three ordered pairs (a, b), (b, ¢), (¢, a), respec-
tively). A directed (Steiner or Mendelsohn) triple system of order v is
a pair (V,B) where V is a v-set of elements and B is a set of transitive
triples (triples or cyclic triples, respectively) of distinct elements of V,
called blocks, such that every ordered pair (unordered pair or ordered
pair, respectively) of distinct elements of V' is contained in exactly one
block of 9B. A system is said to be extended if both the blocks and the
pairs are allowed repeated elements.

In an extended system, each block is one of three types: it consists of
(1) three same elements, (ii) two same elements and one different element,
or (iii) three distinct elements. An element a is called an idempotent if
there is a block consisting of three a’s; and a nonidempotent if there is
a block consisting of two a’s and one another element. We denote by
ESTS(v,p) (or EMTS(v,p)) an extended Steiner (Mendelsohn) triple
system of order v with p idempotents.
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THEOREM 1.1 [5]. There exists an ESTS(v, p) if and only if
(i) v =0 (mod 3) and p =0 (mod 3) or

(i) v=1, 2 (mod 3) and p = 1 (mod 3), but

(iii) when v is even, p < § and

(iv) when p=v—1, v =2.

THEOREM 1.2 [1]. There exists an EMTS (v, p) if and only if
(i) v =0 (mod 3) and p =0 (mod 3), (v, p) # (6,6), or
(i) v=1, 2 (mod 3) and p =1 (mod 3).

If a collection of three objects a,b,c, {a,b,¢c} in order, is a transi-
tive triple, we denote it by [a, b, ¢| which consists of three ordered pairs
(a,b),(b,c) and (a,c). In an extended directed triple system, there are
five types of blocks:

[a,a,d], [a,a,b], [a,b,a], [b,a,aq], [a,b,c]

where a, b, ¢ are distinct elements. We always deem that each block of
the form [a, a, a] contains only one ordered pair (a, a), and each block of
the form [a, a,b] (or [b,a,a]) with ¢ # b contains just two ordered pairs
(a,a), (a,b) ((a,a), (b,a)). If [a,a,b] ([a,b,a] or [b,a,a]) is a block, then
we say that a is a nonidempotent of type I (type 2 or type 3, respec-
tively). We denote by EDTS(v, p,m1,m2,n3) an extended directed triple
system of order v with p idempotents, 77 nonidempotents of type 1, 1o
nonidempotents of type 2, and 73 nonidempotents of type 3. Obviously,
we have
0<p,m,n2,m3 <v and p+m +n2+n3 =v.

In general, the existence of EDTS(v, p,n1,m2,m3)s is in doubt. In this
paper, we deal with the existence of special classes of EDT'S(v, p, 1,02,
n3)s, so-called, one is cyclic and the other is rotational systems. We
obtain a necessary and sufficient condition for the existence of cyclic
extended directed triple systems, and when & = 1 or 2, we also ob-
tain a necessary and sufficient condition for the existence of k-rotational
extended directed triple systems.

2. Cyclic extended directed triple systems

An automorphism of an EDTS(v), (V,*B), is a permutation a of V,
which maps the block-set 8 onto itself, and « is said to be cyclic if it
consists of a single cycle of length v. A cyclic EDTS(v) is one which
admits a cyclic automorphism.



Extended directed triple systems 357

Suppose that (V,B) is a cyclic EDT'S(v) with « as a cyclic automor-
phism. Then the block-set 9B is partitioned into disjoint orbits under
the group < a > which is generated by a. We say that a set of blocks
which are taken exactly one, called a starter block, from each of the
orbits is called a set of starter blocks for the cyclic EDTS(v). The
length of a starter block is the number of blocks of the orbit contain-
ing the starter block. It is easy to see that the length of each starter
block of a cyclic EDT'S(v) is equal to v. Thus, in a cyclic EDTS(v), if
there is an idempotent then each element must be an idempotent, or if
there is a nonidempotent then each element should be a nonidempotent.
Therefore, if there exists a cyclic EDTS(v, p,n1,m2,M3), it is one of the
systems

EDTS(v,v,0,0,0), EDTS(v,0,v,0,0),

EDTS(v,0,0,v,0), EDTS(v,0,0,0,v).

REMARK 2.1. We see that *B is a set of blocks for an EDTS (v, p,m,
n2,7m3) if and only if {[c,b,a]|la,b,c] € B} is a set of blocks for an
EDTS(v, p,n3,m2,m). Therefore, there exists an EDTS(v, p,m1,72,M3)
if and only if there exists an EDTS(v, p, 13,72, 71 )-

By Remark 2.1 and the above observation, it is enough to consider
the existence of cyclic EDT'S(v, p, n1,m2,n3) for the three cases (i) p = v,
(ii) m = v (or n3 = v), and (iii) 72 = v with others zero in each case.

REMARK 2.2. Suppose there exists a cyclic EDTS(v, p,n1,m2,M3)
and let n be the number of blocks consisting of three distinct elements.
By counting the number of ordered pairs which occur in the system, we
have the following relations:

(i) if p = v, then v+ 3n = v?; sov =0 or 1 (mod 3),

(ii) if 791 = v, then 2v + 3n = v%; s0o v =0 or 2 (mod 3),

(iii) if 7o = v, then 3v + 3n = v%; so v = 0 (mod 3).

It is easy to see that there exists a cyclic EDTS(v,v,0,0,0) if and
only if there exists a cyclic directed triple system of order v, which is
equivalent to v = 1, 4 or 7 (mod 12) for the existence [4]. Thus we have
the following theorem.

THEOREM 2.3. There exists a cyclic EDTS(v,v,0,0,0) if and only
ifv=1, 4or 7 (mod 12).

LEMMA 2.4. If there exists a cyclic EDTS(v,0,v,0,0), then v = 2
(mod 3).
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PROOF. Since each starter block must have length v, the total num-
ber of blocks is divisible by v, but there are 22;—” blocks and this should
be divided by v; so v = 2 (mod 3). O

Hereafter, we assume that our cyclic EDTS(v) has the element-set
V = Z,, the additive abelian group of residue classes, 0,1,...,v — 1, of
integers modulo v and the permutation o = (0,1,...,v — 1) as a cyclic
automorphism, unless other stated.

REMARK 2.5. Let we have a cyclic EDTS(v,0,v,0,0) or a cyclic
EDTS(v,0,0,v,0). With each orbit which contains a block [a, b, |, we
associate a unique difference triple (x,y, z) defined by

z=b—-qgy=c—bz=c—a (mod v)

which satisfy the equation z+y = z (mod v). With each difference triple
(x,y,z) where all z,y, z are nonzero, we associate the orbit containing
the block [0, z, z+y]. If (z, —z,0) is a difference triple, we correspond the
orbit containing the block [0, z,0], and if (0,z,z) is a difference triple,
we correspond the orbit containing the block [0, 0, z].

We see that the existence of a cyclic FDTS(v,0,0,v,0) is equiva-
lent to the existence of a set of difference triples (z,y, z) with z + y =
z (mod wv), which is a partition of Z,, and the existence of a cyclic
EDTS(v,0,v,0,0) is equivalent to the existence of a set of difference
triples (z,y, z) with z+y = 2z (mod v), which is a partition of Z,\ {0, z}
for some x. For the differences 0, x, we correspond the orbit containing
the block [0, 0, z].

LEMMA 2.6. If v =2 (mod 3), then there exists a cyclic

EDTS(v,0,v,0,0).

PrOOF. If v =6t — 1 and ¢t > 1, then the following ordered triples

(2r,3t—1—73t—1+7), r=12,...,t—1,
2r—-1,5t—-1—-r5t—-2+47r), r=12,...,t

form a partition of the set Zg;—1\ {0, 3t—1} with 2¢— 1 difference triples
(%,y,2) so that z +y = z (mod 6t — 1).
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Let v=6t+2and ¢t > 0. If t = 0, [0,0,1],(L,1,0] form a cyclic
EDTS(2,0,2,0,0). If t > 1, then the following ordered triples

(2r,3t+1—r,3t+1+47), r=1,2,...,¢t,
2r—1,5t+2—7bt+147r), r=12,...,t

form a partition of the set Zgii2 \ {0, 3t + 1} with 2¢ difference triples
(z,y, z) so that ¢ + y = z (mod 6t + 2). O

Now, Lemmas 2.4 and 2.6 together yield the following theorem.
THEOREM 2.7. There exists a cyclic EDTS(v,0,v,0,0) if and only
ifv=2 (mod 3).

REMARK 2.8. For v =0 (mod 3), we see that there exists a partition
of the set Z, into difference triples (z,y,2) with z + y = 2 (mod v) if
and only if there exists a partition of the set Z, \ {a,b,0} into difference
triples (z,y,z) with £ +y = 2 (mod v) and a + b = v for some a,b.
If v = 6t, then the later is equivalent to exist a set of ordered pairs
{(ar,b.)|r =1,2,...,2¢t — 1} with the property that

{ar,br =1,2,...,2t = 1} = Zg: \ {0, 21,22, ..., T2t—1, %, Y}
where 0,21, %2,...,Z2:-1, &,y are distinct such that
by —ar,=x, forr=1,2,...,2t— 1l and x+y = 6t
If such a set of ordered pairs exists, then we have

2t—1

6t(6t — 1
> (ar +by) Z—(—?—z‘(l'1+-’1/'2+"'+332t—1+$+y),
r=1

2t—1

Z(bT —ay) =11+ To+ -+ Top—1.

r=1

Adding both sides, respectively, we have

2t—-1

2> b =3t(6t— 1) — 6t
r=1

since z + y = 6¢. Thus 3¢(6t — 1) — 6t = 0 (mod 2); so t must be even.

From Remarks 2.2 and 2.8, we have the following lemma.
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LEMMA 2.9. If there exists a cyclic EDTS(v,0,0,v,0), then v = 0,
3 or 9 (mod 12).

LEMMA 2.10. If v = 0,3,9 (mod 12), then there exists a cyclic
EDTS(v,0,0,v,0).

PrROOF. Let v = 6t + 3. Then a set of starter blocks for a cyclic
EDTS(v,0,0,v,0):
v=3:[0,1,0].
v=9:[0,1,3],[3,1,0],[0,4,0].
For t > 2, there exists a cyclic STS(6t + 3) based on Zs:+3 [6] and
if B is a set of its starter blocks, then it must contain the starter block
{0,2t + 1,4t + 2}. For each {a,b,c} € B\ {{0,2t + 1,4t +2}}, we define

[a,b,c],[c, b, al
which form a set of starter blocks for a cyclic EDT'S(6t+3,0,0,6t+3,0)

together with [0, 2t + 1,0].
If v = 12¢, then the following ordered triples

(3t, 6t, 9t) (2t,10t,0),

(2r,3t — 1,3t + 1), r=12,...,t—1,
(2r — 1,5t —r,5t —1+71), r=1,2,...,t,
(12¢t — 2r,9t + 7,9t — 1), r=12,...,t—1,
(12t 4+1—-2r,Tt+7,Tt+1—7), 7=1,2,...,t

form a partition of the set Z5, with 4¢ difference triples (z,y, z) so that
T +y =z (mod 12t). d

Lemmas 2.9 and 2.10 together yield the following theorem.

THEOREM 2.11. There exists a cyclic EDTS(v,0,0,v,0) if and only
ifv=0, 3or9 (mod 12).

Now, we can conclude the following theorem.

THEOREM 2.12. There exists a cyclic EDTS(v, p,n1,m2,m3) if and
anly if

(i) p=v=1,4,0r7(mod 12) andm =13 =13 =0, or

(ii))m =v=2(mod 3) and p=1n2=n3 =0, or

(iii) e =v =0, 3 0or 9 (mod 12) and p=mn =93 =0, or

(iv)ms=v=2 (mod 3) and p=m =12 =0.
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3. l-rotational extended directed triple systems

An EDTS(v,p,m1,m2,m3) is said to be k-rotational if it admits an
automorphism «a consisting of a single fixed element and & disjoint cycles
of length ”—;—1 In a l-rotational EDTS(v, p,m,72,7m3), each orbit of a
block has length either 1 or v — 1, and hence p must be either 1 or v.
Thus if there exists a 1-rotational EDT'S(v,1,7;,72,73), then we have
(i) m =v—1, (ii) g2 = v — 1, or (iii) 73 = v — 1, with others zero.
By Remark 2.1, it is enough to consider the existence of 1-rotational
EDTS(v,1,m1,m2,n3) for the two cases (i) and (ii).

LEMMA 3.1. (i) If there exists a 1-rotational EDT'S(v,1,v —1,0,0),
then v =1 (mod 3).

(ii) If there exists a I-rotational EDTS(v,1,0,v — 1,0), then v = 2
(mod 3).

PROOF. Let n be the number of blocks consisting of three distinct
elements. By counting the number of ordered pairs which appear in the
system, if it is (i), we have

1+ 2(v~1) + 3n = 0%
so 3n = (v — 1)? and hence v = 1 (mod 3); if it is (ii), we have
1+3(v—1)+3n=v%

so 3n = (v—2)(v—1) and hence v = 2 (mod 3) since (v—2)(v— 1) must
be divisible by both 3 and v — 1. U

LEMMA 3.2. Ifv =2, 5 or 8 (mod 12), then there exists a 1-rotational

EDTS(v,1,0,v —1,0).

PROOF. It comes from the existence of cyclic DT'S(v — 1) [3]. Let
(V,B) be a cyclic DT'S(v — 1) and let oo be a new element. Then (V U
{00}, {[o0, 00, ], [z, 00, z]|z € V} UB) is a 1-rotational EDTS(v, 1,0,
v — 1,0) which fixes co. O

A (Sy, 4t—2)-system is a set of ordered pairs {(a,, b )|r = 1,2,...,4t—
2} such that {a,,bq{r =1,2,...,4t — 2} = {4¢,4t +1,...,6t - 2,6t,...,
12t -4} and b, —a, =r+1forr=1,2,....4¢t - 2.
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LEMMA 3.3. For each positive integer t, there exists a (Sy,4t — 2)-
system.

ProoF. The following ordered pairs form a (51,4t — 2)-system:

(6t,10t — 2),
(4t —1+nr8t—r), r=1,2,...,2t—1,
8t—14+7r12t—-3—-7r), r=1,2,...,2t—2.

a

Throughout, we assume that our 1-rotational EDTS(v) has the ele-
ment-set V = Z,_1 U{oo} and the permutation & = (c0)(0,1,...,v—1)
as a l-rotational automorphism.

LEMMA 3.4. If v = 11 (mod 12), then there exists a 1-rotational
EDTS(v,1,0,v ~1,0).

PROOF. Let v = 12t — 1 and let {(a,,b.)|r = 1,2,...,4t — 2} be a
(51,4t — 2)-system. Then the following transitive triples
[00, 00, <], [0, 00, 6¢ — 1], [0, 1, 0],
[0,r+ 1,6, r=1,2,...,4t—2
form a set of starter blocks for a 1-rotational EDTS(12t — 1,1,0,12t —
2,0). a
Lemmas 3,1, 3.2 and 3.4 together yield the following theorem.

THEOREM 3.5. There exists a 1-rotational EDT'S(v,1,0,v — 1,0) if
and only if v =2 (mod 3).

A (So,2t—1)-system is a set of ordered pairs {(a,,b,)|r = 1,2,...,2t—
1} such that {a,,brr =1,2,...,2¢ —1} = {2¢+1,2¢+2,...,3t— 1,3t +
1,...,6t—1} and b, ~a, =r forr=1,2,....2¢t - 1.

LEMMA 3.6. For each positive integer t, there exists a (S3,2t — 1)-
sSystemni.

PRrROOF. The following ordered pairs form a (Ss, 2t — 1)-system:

(3t — 7,3t + 1), r=1,2,...,t—1,
(4 —1476t—7), r=1,2,...,1t
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LEMMA 3.7. If v = 1 (mod 6), then there exists a l-rotational
EDTS(v,1,v—1,0,0).

PROOF. Let v = 6t + 1 and let {(a,,b;)|r = 1,2,...,2t — 1} be a
(S2,2t — 1)-system. Then the following transitive triples

[00, 00, 00}, [0, 00, 3t], [0, 0, 2¢],
0,r,b,], r=1,2,...,2t -1
form a set of starter blocks for a 1-rotational EDT'S(6t + 1,1, 6t,0,0).0

LEMMA 3.8. Ifv =4 (mod 6), then there exists a cyclic EDTS(v, 1,
v—1,0,0).

PROOF. Let v = 6t+4. Then a set of starter blocks for a 1-rotational

EDTS(v,1,v—1,0,0):
v = 4: {00, 00,00, [0,00,1],]0,0,2].
v=29: [00, 00,00, [0,00,4],0,1,3],[3,1,0],[0,0,5].

For t > 2, there exists a cyclic ST.5(6t+3) based on Zg; 3 [4] and if B
is a set of its starter blocks, then we may say that it contains the starter
block {0, 2t + 1,4¢ + 2}. For each {a,b,c} € B\ {{0,2t + 1,4t + 2}}, we
define

[a,b,¢c),[c, b, al

which form a set of starter blocks for a cyclic EDT'S(6¢+3,0,0,6t+3,0)
together with [oo, 00, 00], [0, 00, 4t + 2], [0, 0, 2¢ + 1]. 0

Lemmas 3.1,3.7 and 3.8 together yield the following theorem.

THEOREM 3.9. There exists a I-rotational EDTS(v,1,v — 1,0,0) if
and only if v =1 (mod 3).

The following theorem is a consequence of the existence of a 1-rota-
tional DT'S(v) [3].

THEOREM 3.10. There exists a 1-rotational EDTS(v,v,0,0,0) if and
only if v =0 (mod 3).

Now, we can conclude the following theorem.

THEOREM 3.11. There exists a 1-rotational EDTS (v, p,n1,m2,73) if
and only if

(i)v=0(mod 3), p=vandm =n=n3=0, or

(i)v=1(mod 3),p=1,m=v—1landn =n3=0, or

(i) v=2(mod 3), p=1, 3 =v—1andm =n3 =0, or

(iv)v=1(mod 3),p=1,n3=v—~1and g =n =0.
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4. 2-rotational extended directed triple systems

In a 2-rotational EDTS (v, p,m,m2,73), p must be 1, ”‘H or v. The
following theorem is a consequence of the existence of a 2-rotational
DTS (v) (3]

THEOREM 4.1. There exists a 2-rotational EDTS(v,v,0,0,0) if and
only if v =1 (mod 6).

In a 2-rotational EDTS (U, > ,7]1,7]2,7]3) we have (i) ;1 = “;1, (ii)
Mg = 2—2—1- or (iii) n3 = v=1 with others zero. By Remark 2.1, it is enough
to consider the existence of 2-rotational EDTS ( v, 2 L m,me, 7]3) for the
two cases (i) and (ii).

LEMMA 4.2. (i) If there exists a 2-rotational EDTS(v, %34, %51,0,
0), then v =>5 (mod 6).

(ii) If there exists a 2-rotational EDT'S (v, ”—;—1, 0, —”—;—1, O), thenv =1
(mod 6).

PrOOF. First of all, v must be odd. Let n be the number of blocks
consisting of three distinct elements. By counting the number of ordered
pairs which appear in the system, if it is (i), we have

v+1
2

and hence v = 5 (mod 6) since v is odd; and if it is

+ (v —1)+3n =%

so 3n =
(ii), we have

(2v—1)(v—1)
2

v+1 + 3(v—1)
2 2
so0 3n = (v — 1)? and hence v = 1 (mod 6) since v is odd. a

+3n = v?%;

LEMMA 4.3. There exists a 2-rotational EDTS ( ”+1 ,0, ”;1,0) for
v =1 (mod 6).

PROOF. If v =1 (mod 6), there exists a 2-rotational ESTS (v, 21)
[2]. If we replace each block of a 2-rotational ESTS (v, v41) as follows:

{a,a,a} by [a,a,a),
{a,b,c} by [a,b,c] and [c,b,a],
{a,a,b} by [a,b,al
1

the resulting transitive triples form a 2-rotational EDT'S(v, ”‘5 ,0, ”—%l,
0). a

From Lemmas 4.2 and 4.3, we have the following theorem.
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THEOREM 4.4. There exists a 2-rotational EDTS ('u, 1’”;—1, 0, 3;—1, O)
if and only if v = 1 (mod 6).

LEMMA 4.5. There exist a 2-rotational EDTS(v, ”—‘2“, ”—;1—,0,0) for
v =5 (mod 6).

Proor. Let v = 6t + 5 and ¢ > 0. Then the following transitive
triples '

[00, 00, 0], [0, 00, 5t + 1], [1, 00, 5t + 2],
[0,0,0], [1,1,6t +3], [0, 6t + 3,6 + 2],
0,2r — 1,3t +7], [0,2r 5+ 1+7], r=1,2,...,t

1,2r,3t+1+7], [L2r+1,5t+247], r=1,2,...,¢

are a set of starter blocks for a 2-rotational EDTS(v, %, “—;1,0,0)
based on Z,_; U {oo} with

a:(mzuwg—@<L&”wg—Q

as a 2-rotational automorphism. (I

From Lemmas 4.2 and 4.5, we have the following theorem.

THEOREM 4.6. There exists a 2-rotational EDT'S (v, 22, %51,0,0)
if and only if v =5 (mod 6).

Now, In a 2-rotational EDT'S (v,1,m1,72,73), we have (i) m =v—1,
(11) ne=v—1, (111) ns =v—1, (IV) m="nN2= P_;la (V) mh=n= 2’5_1» or
(Vi) e =13 = ”—'2‘1—, with others zero. Also, by Remark 2.1, it is enough
to consider the existence of 2-rotational EDT'S (v,1,71,72,73) for the

two cases (i), (ii), (iv) and (v).

LEMMA 4.7. (i) If there exists a 2-rotational EDTS(v,1,v —1,0,0),
then v =1 (mod 6).

(ii) If there exists a 2-rotational EDTS(v,1,0,v — 1,0), then v = 5
(mod 6).

Proor. First of all, since L;l is an integer, v must be odd. Let n be
the number of blocks consisting of three distinct elements. By counting
the number of ordered pairs which appear in the system, if it is (i), we
have

14+2(v—1)43n=1%
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s0 3n = (v — 1)? and hence v = 1 (mod 3); so v = 1 (mod 6) since v is
odd; if it is (ii), we have

14+ 3(v—1) +3n =%

50 3n = (v—2)(v—1) and hence v = 5 (mod 6) since (v —2)(v— 1) must
be divisible by both 3 and ”—;—l, and v is odd. a

It is easy to see that if there exists a 1-rotational EDT'S(v, p,m, 72,
73) with a as a 1-rotational automorphism, then it is also a 2-rotational
EDTS (v, p,n1,72,n3) with o? as a 2-rotational automorphism, provided
v is odd. Thus the following theorem follows from Theorems 3.5 and 3.9
together with Lemma 4.7.

THEOREM 4.8. (i) There exists a 2-rotational EDTS(v,1,v—~1,0,0)
if and only if v =1 (mod 6).

(ii) There exists a 2-rotational EDTS(v,1,0,v — 1,0) if and only if
v=5 (mod 6).

LEMMA 4.9. If there exists a 2-rotational EDTS (v,1,%5%,0, %51),
then v =1 (mod 6).

Proor. First of all, v is odd. Let n be the number of blocks consist-
ing of three distinct elements. Then we have

14+2(v —1) + 3n =%

so 3n = (v — 1) which is divisible by 5 and hence v = 1 (mod 3).
Since v is odd, v = 1 (mod 6). a

LEMMA 4.10. There exists a 2-rotational EDTS (v, 1, ”—;—1,0, 1’%1—)
for v =1 (mod 6).

PROOF. Let v = 6¢t+1 and let B be the set of blocks for a 1-rotational
EDTS(v,1,v ~-1,0,0) constructed in Lemma 3.7, with

a=(0)(0,1,...,v-2)
as a l-rotational automorphism. if we replace the blocks
1,1,2¢+1],(3,3,2t + 3],...,[6t — 1,6t — 1,2t — 1]
in B by

(1,2t + 1,2t +1),[3,2t + 3,2t +3],...,[6t — 1,2t — 1,2t — 1],
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then the resulting blocks form a set of blocks for a 2-rotational EDTS
(v,1,%5+,0, 252) with

o = (00)(0,2,...,6t —2)(1,3,...,6t — 1)
as a 2-rotational automorphism. O

From Lemmas 4.9 and 4.10, we have the following theorem.

THEOREM 4.11. There exists a 2-rotational EDTS (v,1,%52,0, 251)
if and only if v =1 (mod 6).

LEMMA 4.12. If there exists a 2-rotational EDTS (v,1, %52, 231,0),
then v = 3 (mod 6).

Proor. First of all, v is odd. Let n be the number of blocks consist-
ing of three distinct elements. Then we have

3(v—1)
2

1+(v—-1)+ +3n = v

50 3n = Q”—‘%(—“ﬁ which is divisible by *5* and hence v = 0 (mod 3).
Since v is odd, v = 3 (mod 6). O

REMARK 4.13. It is easy to see that there is no 2-rotational EDT'S(3,
1,1,1,0).

We assume that our 2-rotational EDTS(v) has the element-set V =
Zy1 X Z3U{oo} and the permutation o = (00) (0o, 1o, ..., (%5 - 1)0)
(01,14,..., (¥5% — 1),) as a 2-rotational automorphism. For brevity, we
write x; for the ordered pair (z,1) € ZUT—l X Za.

A (S3,3t+1)-system is a set of ordered pairs {(ar, b.)|r = 1,2,...,3t+
1} such that {a,,b.|r = 1,2,...,3t+1} ={0,1,...,6t+1} and b, —a, =
rforr=1,2,...,3t+1.

LEMMA 4.14. Ift =0 or 1 (mod 4), then there exists a (S3,3t + 1)-
system.
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PRrROOF. Obviously, {(0,1)} is a (S3, 1)-system. If ¢ = 0 (mod 4) and
¢t > 4, then the following ordered pairs form a (Ss, 3t + 1)-system:

(Bt+r,6t+2—1), 7":1,2,...,?2},

(r—1,3t—r), r=1,2,...,%,
3t+4 9t 3t—8
(T—I—r,z——r), r—1,2,...,T,

3t 3t+4) (3t 9142\ (342,
1 J\2 2 )2 )

{(0,1), (4,6),(2,5),(3,7)} is a (S3,4)-system. If ¢ = 1 (mod 4) and
t > 5, then the following ordered pairs form a (.53, 3t + 1)-system:

t+1
Bt—1+7r,6t+2—71), r=1,2,...,3—2i—,
£ —
(r—1,3t~1-r), r=1,2,...,§—4—3,
3t+1 9t —1 3t—7
< 2 +r, 1 —r), r—1,2,...,T,

3t—3 3t+1 3t—1 . 4\ (3t+1 9+1
4 7 4 )0\ 27 N2 2 )

LEMMA 4.15. There exists a 2-rotational EDTS(v, 1, “—;l, ”—;1, 0) for
v=9 or 21 (mod 48).

PROOF. Let v = 12t + 9, ¢ = 0 or 1 (mod 4), and let {(a,,b.)|r =
1,2,...,3t + 1} be a (S3,3t + 1)-system. Then the following transitive
triples

[00, 00, 0], [00, 0o, (3t + 2)0], [00, (6t + 2)1, O], [Oo, (6t + 2)1, 7],
[007 To, (b'r‘)l]a [(br)l,"b: OO] r= ]-y 2) ey 3t + 17
[(6¢ + 3)1, Og, (6% + 3)1]

together with a set of starter blocks for a cyclic DT'S(6t + 4) based on
Zpt+4 X {1} form a set of starter blocks for a 2-rotational EDTS(v, 1,
2l v=1.0,0). O

2

O

A (854, 3t+1)-system is a set of ordered pairs {(a,, b, )|r =1,2,...,3t+
1} such that {a,,b.|r = 1,2,...,3t + 1} = {0,1,...,6t,6¢t + 2} and
b,—a,=rforr=1,2,...,3t+1.
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LEMMA 4.16. Ift =2 or 3 (mod 4), then there exists a (Sy, 3t + 1)-
systemn.

PrOOF. If t = 2 (mod 4), then the following ordered pairs form a
(S4, 3t + 1)-system:

3t—2
Bt+1+r6t+1—7), r:1,2,...,——2—,
-2
(r—1,3t—r), r=1,2,...,§z—,
3t +2 9t + 2 3t—6
— = e, —— 2
( 4 +7‘7 4 T‘), ,r 1727 ¥ 4 7(t> )7

3t—2 3t+2\ (3t 3t+2 9t+2
SEETA) (= Srers 1 .
( T >,(2,3t>,< 5 ),(3t+ 6t + 2)

If t = 3 (mod 4), then the following ordered pairs form a (Sy, 3t 4 1)-
system:

3t—5

Bt+1+m6t+1—r), r=1,2,...,——4—,

t—1

(r—1,3t—r), r=1,2,...,§—2——,

1561, 20t+1 Ly Bt=5

4 2 4 T? 7‘—,,---, 4 ?

3t—1 9t—1 9% +1 21t +1 21t +5
— t .
(353,90 (s 0) (B0 805 oy

LEMMA 4.17. There exists a 2-rotational EDTS (v, 1, %5%, 251,0)
for v = 33 or 45 (mod 48).

PrROOF. Let v = 12t + 9, t = 2 or 3 (mod 4), and let {(a,,b,)|r =

1,2,...,3t + 1} be a (54,3t + 1)-system. Then the following transitive
triples

[007 0, OO], [00, OO’ (3t + 2)0]a [007 (6t + 1)17 00]7 [007 (6t =+ 1)17 OO],
[OOaTO7 (br)l]v [(br)la'rOa 00] r= la 2? s 73t + ]-a
[(6t + 3)1, 0o, (6t + 3)1]
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together with a set of starter blocks for a cyclic DT'S(6t + 4) based on
Zgiy4 % {1} form a set of starter blocks for a 2-rotational EDTS(v, 1,

v=1 v-1
%57 0,0). O

A (Ss5,3t)-system is a set of ordered pairs {(a,,b,)|r = 1,2,...,3t}
such that {a,,b;|r =1,2,...,3t+1} = {0,1,...,6t—1} and b, —a, =7
forr=1,2,...,3t.

LEMMA 4.18. Ift = 0 or 3 (mod 4), then there exists a (S5, 3t)-
system.

ProOOF. If t = 0 (mod 4), then the following ordered pairs form a
(85, 3t)-system:

3t
(8t —2+r,6t —7), r=1,2,...,5,
3t—14
(r—1,3t—2-r), r=1,2,...,T,
9t — 4 t—
(%'FT‘,T—T), r=1,2,...,¥,

36-4 3t (3-2, ) (3t 9t—2
4 74 ) 2 3 ) 27 2 *

If t = 3 (mod 4), then the following ordered pairs form a (Ss, 3t)-
system:

t—1

(3t — 1476t —r), r=1,2,...,3—2——,

3t—1

(r—1,3t—1—7), r=12.., 2=,

3t+3 9t —-3 3t—9
< 1 +r, 1 —r), r—1,2,...,T, (t > 3),

3t—1 3t+3 3t—-1 -1 375+13t_1
4 7 4 ’ 2 72 ’ 2’ '
(i

LEMMA 4.19. Ifv =3 or 39 (mod 48) and v # 3, then there exists a

2-rotational EDTS (v,1, ¥5%, %51,0).
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PROOF. Let v = 12¢+ 3, t = 0 or 3 (mod 4), ¢ > 0, and let
{(ar,br)|r =1,2,...,3t} be a (S5, 3t)-system. Then the following tran-
sitive triples

[OO,OO,OOL[00,00,(3t)0L[OO,(bgt)l,OQL[(3t)1,Oo,OOL
[007T0a(br)1];[(br)l,TO700] T = 1,2,...,3t-— 1,

[(3t)0, 00, (b3t)1], [(6t)1, 0o, (6)1]
together with a set of starter blocks for a cyclic DT'S(6t + 4) based on

Zgry1 X {1} form a set of starter blocks for a 2-rotational EDTS(v, 1,

v—1 —1
7 %5, 0,0). O

A (Se,3t)-system is a set of ordered pairs {(a,,b.)|r = 1,2,...,3t}
such that {a,,b.|r =1,2,...,3t+1} ={0,1,...,6t—2,6t} and b, —a, =
rforr=1,2,...,3t

LEMMA 4.20. Ift =1 or 2 (mod 4), then there exists a (Sg,3t + 1)-
system.

Proor. {(0,1),(2,4),(3,6)} is a (Se,3t)-system. If t = 1 (mod 4)
and t > 1, then the following ordered pairs form a (S, 3t)-system:

t_
(3t +r,6t—1—r), r=1,2,...,§——2—3,
(r—1,3t—1-r), r=LZ~q§£3,
3t+1 9t —1 3t—7
(T+T,‘_4——7”), 7’—1,2,...,—4—,
3t+1 3t+5 3t—1 3t+1 9 -1
t—1 —_— t).
(01, 300) (300 ) (41 0)

If t = 2 (mod 4) and t > 1, then the following ordered pairs form a
(S, 3t)-system:
3t—6

3t+r,6t—1—r1), r==1,2,...,—4——, (t>2),
t —
(r—1,3t—1-r), 7‘:1,2,...,—3—2—2,
15t — 6 21t —6 3t—6
( 1 + 7, 1 —7'), r—1,2,...,—4—, (t >2),

3t—2 9t—4 9t — 2 21t —6 21t —2
< 2 ) 2 )a(?’t—l? 2 )7( 4 ’ 4 >7(3t’6t)

O
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LEMMA 4.21. There exists a 2-rotational EDTS (v, 1, %51, 251,0)
for v = 15 or 27 (mod 48).

PROOF. Let v =12t + 3, ¢t = 1 or 2 (mod 4), and let {(a,,b.)|r =
1,2,...,3t} be a (Sg, 3t)-system. Then the following transitive triples

[OO, o0, OO], [00’ 007 (3t)0]7 [OO, (b3t)17 00]’ [(3t)1’ 00’ OO],
[00,7‘0, (br)l]; [(br)h 7‘0,00] r= 1, 2, e ,3t - 1,
[(3t)0, 00, (b3t)a], [(62 — 1)1, 00, (6 — 1)4]

together with a set of starter blocks for a cyclic DT'S(6t + 4) based on

Zgt+1 X {1} form a set of starter blocks for a 2-rotational EDTS(v, 1,

v=1 v=1 0 0). 0
9 v g 1Y

From Lemmas 4.12, 4.15, 4.19 and 4.21, we have the following theo-
rem.

THEOREM 4.22. There exists a 2-rotational EDTS(v, 1, %5 1, ”51, 0)
if and only if v = 3 (mod 6), v # 3.

Now, we can conclude the following theorem

THEOREM 4.23. There exists a 2-rotational EDTS(v, p,n1,m2,n3) if
and only if

(i) v=1 (mod 6), p=v, andm-ng—ng,—o or

(i) v=>5 (mod 6), p=, m =22, and e =3 =0, or

(iii) v = 1 (mod6),p——g—,n2———— and m =n3 =0, or

(iv) v=5 (mod 6), p= 2L, ng = ,andm =mn2 =0, or

(v) v=1 (mod 6), p -1 771—11-1 andnz n3 =0, or
(vijv=5(mod 6),p=1,n2=v—1,and g =n3 =0, or
(
(
(
(

vii) v=1 (mod 6), p=1, ns =v —1, a,ndm—nsz or
Vl)’U_.].(mOd6)p—1 m="m3= andng 0, or
1x)v_3(mod6)v7é3 p=1, 771—772 2=1 and n3 =0, or

x)v=3(mod6),v#3, p=1,n=1n= =0.

References

[1] Frank E. Bennett, Extended cyclic triple systems, Discrete Math. 24 (1978), 139-
146.

[2] C. J. Cho, Rotational extended triple systems, Kyungpook Math. J. 31 (1991),
219-234.



Extended directed triple systems 373

[3] C.J.Cho, Y. Chae and S. G. Hwang, Rotational directed triple systems, J. Korean

Math. Soc. 24 (1987), no. 1, 133-142.

[4] M. J. Colbourn and C. J. Colbourn, The analysis of directed triple systems by
refinement, Annals of Discrete Math. 15 (1982}, 97-103.

(5] D. M. Johnson and N. S. Mendelsohn, Extended triple systems, Aequationes

Math. 3 (1972), 291-298.
[6] R. Petesohn, Eine Lésung der beiden Heffterschen Differenzenproblem, Compo-

sitio Math. 6 (1939), 251-257.

Department of Mathematics College of Sciences

Sookmyung Women's University

Seoul 140-742, Korea

E-mail: cjcho@sookmyung.ac.kr
yhhan@sookmyung.ac.kr



