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THE STABILITY OF A MIXED TYPE
FUNCTIONAL INEQUALITY WITH
THE FIXED POINT ALTERNATIVE

Kyoo-HoNG PARK AND YONG-S00 JUNG

ABSTRACT. In this note, by using the fixed point alternative, we
investigate the modified Hyers-Ulam-Rassias stability for the fol-
lowing mixed type functional inequality which is either cubic or
quadratic:

18/ (z — 3y) + 24f(z + y) + f(8y)

—8[f(z + 3y) + 3f(x — y) + 2f u)]I| < o(, ).

1. Introduction

Under what condition does there exist a homomorphism near an ap-
prozimately homomorphism between a group and a metric group ¢ This
is called the stability problem of functional equations which was first
raised by S. M. Ulam [27] in 1940. In the next year, D. H. Hyers [7]
answers the problem of Ulam under the assumption that the groups are
Banach spaces. A generalized version of the theorem of Hyers for ap-
proximately linear mappings was given by Th. M. Rassias in [19]. The
terminology Hyers-Ulam-Rassias stability originates from this historical
background. Since then, a great deal of work has been done by a number
of authors (for instance, [2, 3, 5, 6, 8, 9, 10, 18, 20, 21, 22, 23, 24, 25)).

In particular, one of the important functional equations studied is
the following functional equation [1, 4, 12, 13, 14]:

f@+y)+flz—y) =2f(2) +2f(y).

The quadratic function f(z) = qz? is a solution of this functional equa-
tion, and so one usually call the above functional equation quadratic.
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The Hyers-Ulam stability problem for the quadratic functional in-
equality
If(@+y)+ flz—y) - 2f(z) - 2f(ll <6
was first proved by F. Skof [26] for a function f: X — Y, where X is a
normed space and Y a Banach space. In [4], S. Czerwik generalized the
Hyers-Ulam stability of the quadratic functional inequality.
On the other hand, consider the functional equation (see [11] and cf.

(17)
1) fRz+y)+ 2z -y) =2f(z+y)+2f(z—y) +12f(x).

The equation (1) is satisfied by the cubic function f(x) = cz® and hence,
for convenience in this note, we promise that the equation (1) is called
a cubic functional equation and that every solution of the equation (1)
is said to be a cubic function.

The stability result for the cubic functional inequality

1f2x +y) + f(2z —y) — 2f(z +y) — 2f(z —y) — 12f(2)| < p(z,¥)

was obtained by K.-W. Jun and H.-M. Kim [11], where f is a function
from the normed space X to the Banach space Y.
Now, let us introduce the following functional equation:

(2) 8f(z—3y)+24f(z+y)+ f(8y) = 8[f(z+3y) +3f(z—y) +2f(2y)].

It is easy to see that all the real-valued functions f : R — R of mixed
type, i.e., either f(z) = cz3 or f(z) = qz?, satisfy the functional equa-
tion (2). Our main goal in this note is to investigate the modified Hyers-
Ulam-Rassias stability problem for the following mixed type functional
inequality for a function f: X — Y, where X is a normed space and Y
a Banach space:

(3) 18F(z — 3y) + 24f(z + y) + f(8y)
—8[f(z +3y) +3f(z —y) + 2f (2]l < ¢(=,v)
by using the fixed point alternative [15, 16].

2. Stability of inequality (3)

For explicitly later use, we first state the following theorem:

THEOREM 1. (The alternative of fixed point [15]) Suppose that we
are given a complete generalized metric space (2, d) and a strictly con-
tractive mapping T : Q) — Q with Lipschitz constant A. Then, for each
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given x € (), either
d(T"z, T"*z) = oo for all n >0,

or
There exists a natural number ng such that
e d(T™z, T 2) < oo for all n > ny;
e the sequence (T™x) is convergent to a fixed point y* of T}
e y* is the unique fixed point of T in the set A = {y € Q :
d(T™z,y) < oo};
o d(y,y*) < ti5d(y, Ty) for all y € A.

Now let us prove the modified Hyers-Ulam-Rassias stability for the
functional inequality (3) by using the fixed point alternative as in [16].

From now on, let X be a real vector space and Y be a real Banach
space. Given a function f: X — Y, we set

Df(z,y) = 8f(zx — 3y) + 24f(x +y) + f(8y)
~8[f(z +3y) + 3f(x — y) + 2 (2y)]
for all z,y € X.
Let ¢ : X x X — [0,00) be a given function. Let ¢ : X — [0, 00) be
the function defined by
1 T x z T
s~ 31e(33) +o(- 5-3)
for all z € X such that there exists a constant L < 1 satisfying the
inequality .
x
< L.\ .ol
(4) v <L X-y(7)
for all z € X, where \; =2ifi=0and A\; = % if 2 = 1. Furthermore,
assume that the identity

O(\Px, \}y)

(5) lim =0

holds for all z,y € X, where \; = 2ifi=0and A\; = % ifi =1.
Similarly, we define a function ¢ : X — [0,00) by

o) = 3[p(0.5) +2(05)]

for all z € X, and suppose that there exists a constant M < 1 satisfying
the inequality
z

(6) o) < M- -6 ( )
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for all z € X, where pj =4 if j = 0 and p; = 1 if j = 1. Moreover, the
identity

".Lg;, n
) i AT Y

n—o0 'u,]zn

=0

holds for all z,y € X, where p; =4if j =0 and p; = % if j=1.

THEOREM 2. Suppose that a function f : X — Y satisfies the func-
tional inequality

(8) 1Df(z,y)ll < o(z,y)

for all z,y € X and f(0) = 0. If we take the conditions (4), (5), (6) and
(7), then there exist a unique cubic function C : X — Y and a unique
quadratic function Q) : X — Y such that

1-3i 1-j
© @) - (@) + QI < 1—v(a) + T d(a),
z)— J{—x 1=i
(10 [P e < v
and
T - 1~j
R o) < M

for all x € X, wherei,j =0, 1.
The functions C' and @) are given by

C(z) = lim f(Mfz) — f(=Apx)

n—00 2. /\?n

and Q(z) = lim f(u;bx) + J;(l—“?x)
n—o0 2. ,uj

for all x € X, respectively, where 7,7 =0, 1.
PRrROOF. Consider the set
Q:={k:k: XY, k(0) =0}
and introduce the generalized metric on §2:
dy(k, 1) =inf{K > 0: [[k(z) — I(z)|| < Ky(z) for all z € X }.

It is easy to see that (2,dy) is complete.
Suppose first that we take the conditions (4) and (5). If we define a
function T : 2 — Q by
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for all z € X, then we obtain from (4) that for all k,l € Q,
dy(k,l) <K = |lk(z) - ()| < K?/}(iv) zeX

)\x”<—_K¢()\x) reX

= Hxlg k(Aiz) — A3

— |5 F2) - 55 1) < LKw(@), v e X

—s dy(Tk,Tl) < LK.

Hence we see that
dy(Tk,Tl) < Ldy(k,1)

for all k,1 € Q, that is, T is a strictly contractive self-mapping of 2 with
the Lipschitz constant L.

Let g : X — Y be the function defined by g(z) = %[f(a:) — f(—=z)]
for all z € X. Then we have g(0) =0, g(—z) = —g(z) an

(12) | Dg(z, )| = 118g(z — 3y) + 24g9(z + y) + g(8y)
—8[g(z + 3y) + 3g(z — y) + 29(2y)]||

< ;:[so(w,y) + (=, —y)]
for all z,y € X.
Putting y := z in (12) yields
(13)  llg(8e) ~ 89(4m)] < ; fo(e, ) + ol ~a)],

which, by setting x := £ in (13) and using (4) with the case ¢ = 0, gives

Hg(z)— 2 < Sues) < Lyt

for all x € X, that is, d¢(g,Tg) < L < oo.
If we substitute z := £ in (13) and use (4) with the case i = 1, then

we see that
o) = 2%9(3) || < v(@)

for all z € X, that is, dy(g,79) < 1 < o0.

Now, from the fixed point alternative in both cases, it follows that
there exists a fixed point C' : X — Y of T in Q, ie., C(2z) = 8C(x)
holds for all z € X such that

g(\'z)

(14) ( ) n—+oc> )\3n

for all z € X since lim, . d(T"g,C) = 0.
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To show that the function C is cubic, let us replace x and y by ATz
and Ay in (12), respectively and divide by A3". Then it follows from
(5) and (14) that

IDC(, )| = lim 1PIAEAY)]

N—00 )\?n
n n X\l )\
o 1y PP ATY) + (=M, —ARY) o
— 2 n—ooo A?n

for all z,y € X, namely, C satisfies the functional equation (2). Since
the identity C(2x) = 8C(z) holds for all x € X, the equation (2) is
reduced to the form

(15) C(z+3y)+3C(z—y)=C(z— 3y) +3C(z +y) +48C(y)
for all z,y € X. Let us replace z by —z in (14). Then it follows from

the oddness of g that C is odd, and hence interchanging = and y in (15)
yields

(16) C(Bz+1vy)+CBz —y) =3C(z+y) +3C(x — y) + 48C(x).

If we put y := —z +y and y := —z — y in (16), respectively and
compare the results, then we obtain

(17) C(4z +y) + C(dx — y) = 2C(2z + y) + 2C(2z — y) + 96C(x).

Finally, replacing y by 2y in (17) and using C(2z) = 8C(z), we see that
C satisfies the functional equation (1). Therefore C is cubic.

According to the fixed point alternative, since C is the unique fixed
point of T in the set A = {k € Q : dy(g,k) < oo}, C is the unique
function such that

lg(z) — Clx)|l < K9()

for all z € X and some constant K > 0. Again using the fixed point
alternative, we have

1
d < ——dylg, T
+(9,C) < 77 du(9, T9),
and so we obtain the inequality
1-i

L
<
4p(9,C) < 7

which yields the inequality (10), where i = 0, 1.
As in the previous case, by introducing the following generalized met-
ric on €

dg(k,l) = inf{R > 0: ||k(z) — I(z)|| < R¢(x) for all z € X},
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we also see that (£2,dy) is complete.
Assume now that we take the conditions (6) and (7). Defining a
function §': Q@ — Q by

Sk(a) = 5 hluso)
J

for all z € X, we obtain from (6) that for all k,1 € Q,
do(k, ) <R = |lk(z) - i(z)|| < R¢( ), x € X

= Hui? k(pjz) — M—) pjx “ < — Rqﬁ(uja:) reX

=:H%Mww—%uwmkmmmmxex

= dy(Sk, Sl) < MR.

Hence we see that
ds(Sk, ST) < Md¢(k,l)

for all k,1 € £2, that is, S is a strictly contractive self-mapping of {2 with
the Lipschitz constant M.
Let h: X — Y be the function defined by h(z) = § [f(z) + f(—)]
-for all z € X. Then we have h(0) =0, h(—z) = h(z) and

(18) | Dh(z,y)|| = [I8h(z — 3y) + 24h(z + y) + h(8y)
—8[h(z + 3y) + 3h{z — y) + 2h(2y)]||

< 5 lol@y) + o=z, )]

for all z,y € X. By setting z := 0 in (18) and then letting y := z, we
get

(19) |(8z) — 16A(2z)|| < 5 [<P(0 ) + ¢(0, —z)] .
Replacing « by £ in (19) and then employing (6) with j = 0, we obtain
(20) he) - 22| < Zolan) < Mo(a)

for all z € X, that is, dg(h, Sh) < M < oc.
If we substitute  := § in (19) and use (6) with the case j = 1, then
we see that

frr—en(3)] <to
for all x € X, that is, dg(h,Sh) <1 < 0.
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Now, by applying the fixed point alternative in both cases, we see that
there exists a fixed point @ : X — Y of S in , ie., Q(4z) = 16Q(z)
holds for all x € X such that

(21) Q(z) = lim

for all z € X since limy, .00 dp(S™h, Q) = 0.

To show that the function @ is quadratic, let us replace x and y by
prx and ply in (18), respectively and divide by u?-". Then it follows
from (7) and (21) that

| Dh(pfz, piy)ll

1DQ(z, y)l| = lim_ I
Kj
1. plplzufy) + e(—pjz, —ply)
7

for all z,y € X which means that @ satisfies the functional equation (2).
Since the identity Q(4z) = 16Q(x) holds for all z € X, the equation (2)
is reduced to the form

(22) Qz+3y)+3Q —y)=Q(z - 3y) +3Q(z +y)

for all z,y € X. By (21), it is immediate that Q(0) = 0 and @ is
even. Let us replace z by y in (22) and then put y := 4. Then we get
Q(2y) = 4Q(y). If we set z := 3y in (22) and use Q(2y) = 4Q(y), then

we have Q(3y) = 9Q(y).
Substituting z := z — y and x := x +y in (22), respectively and then
comparing the results, we obtain

(23)  Qz+4y) +2Q(z — 2y) = Q(r — 4y) + 2Q(x + 2y).
Replacing z by 2z in (23) and using Q(2y) = 4Q(y), we have
(24) Q@ +2y) +2Q(z —y) = Qz — 2y) + 2Q(z + y).

From the substitutions z := z + y and y := z — y in (24), we deduce

QBz —y) +8Q(y) = Az — 3y) + 8Q(z),
and replacing y by —y gives

QBz +y) +8Q(y) = Q(z + 3y) + 8Q(z),

~ ke

that is,
(25) Q(3z +y) — Qz + 3y) = 8Q(x) — 8Q(y).
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Setting = + y instead of x in (24), we get
(26) Q(z + 3y) +2Q(z) = 2Q(z + 2y) +2Q(z — y)
and interchanging = and y in (26) yields

(27) QBz +y) +2Q(y) =2Q(2z +y) +2Q(z — y).
If we subtract (27) from (26) and use (25), we obtain

(28) Qz +2y) +3Q(z) = Q(2z + y) + 3Q(y)

which, by putting y := 2y in (28) and using Q(2y) = 4Q(y), leads to

(29) Q(z +4y) +3Q(z) = 4Q(z +y) + 12Q(y).
Interchanging x with y in (29) gives

(30) Q4z +y) +3Q(y) = 4Q(z + y) + 12Q(),

and by replacing y by —y in (30), we arrive at

(31) Qdz — y) + 3Q(y) = 4Q(z — y) + 12Q(=).

Comparing (30) with (31), we have
(32) Q4z+y)+Q(4z —y) +6Q(y) = 4Q(z +y) +4Q(z —y) +24Q(=).

Now utilizing the substitutions @ := z +y and y :=  — ¥ in (28), we
obtain

Q(3z) +3Q(z +y) = Q (3(m+ 3)) +3Q(a; _ 3),

2 2
and letting y := —y in this relation yields
— _¥ y
QBz)+3Q(z—y)=Q (3(w 2)) + 3Q(x + 2).

Since Q(2z) = 4Q(z) and Q(3z) = 9Q(z), we add the above two rela-
tions to obtain

(33) Q2z +y) +Q(2z —y) = Qz +y) + Q(z — y) + 6Q(z).
Replacing z by 2z in (33), we get
QMz +y) + Q4x — y) = Q(2z + y) + Q(2z — y) + 24Q(z)
which, by (33), gives
(34) QUz+y)+Q4z—y)=Q(x+y) +Qz —y) +30Q(2).
By comparing (32) with (34), we conclude that
Qz +y) + Qz — y) = 2Q(z) + 2Q(y)
which implies that @ is quadratic.
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In view of the fixed point alternative, since Q is the unique fixed point
of S in the set A = {k € Q : dy(h,k) < oo}, Q is the unique function
such that

[h(z) - Q(z)] < Ro(z)
for all z € X and some constant R > 0. Finally, again using the fixed
point alternative, we have

dg(h,Q) <

and so we obtain the inequality
]

dy(h, Q) < 737

which yields the inequality (11), where j =0, 1.
Since we have f(z) = g(z) + h(z) for all z € X, we see that
[1f(z) — (Clz) + Q) < llg(z) — Cla)|| + [|A(z) — Q)|
A= M-
< oY@+ p9@)

for all x € X, where 7,7 = 0,1. We complete the proof of the theorem.
O

1
1-M

dg(h, Sh),

From Theorem 2, we obtain the following corollary concerning the
Hyers-Ulam-Rassias stability [19] of the functional inequality (3).
Let p # 2,3 be any real number. For the convenience, set

1 1

Xl(p) = 22p+2 . (2?—3 — 1)7 XQ(p) ~ 93p-1. (23—17 — 1)

and
(p) = T : (p) = 1_
X3 Tooptd L (4p 2_1)’ X4 T 2% (42 p_l)’

COROLLARY 3. Let X be a normed space and let € > 0, p # 2,3
be real numbers. Suppose that a function f : X — Y satisfies the
functional inequality

1D f (=, )l < e(llll” + llyll”)

for all z,y € X and f(0) = 0. Then there exist a unique cubic function
C : X — Y and a unique quadratic function @ : X — Y such that

|1f(2) — (C(z) + Q)| < x(pellz]P,

|22 I8 o) < wpellalr (=1 or 2)
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and

Hﬂ_x—)‘g_f—tﬂ - Q@)” < xe(p)ellzfl? (=3 or 4),

for all x € X, where

xi(p) +x3(p) if p>3
x(p) =14 xo(p) +x3(p) if 2<p<3
xo(p) + xa(p) if p<2.

The functions C' and @) are given by

for all x € X, respectively, wherei =0ifp<3andi=1ifp>3,7=0
ifp<2andj=1ifp>2.

PROOF. Let ¢(z,y) := e(||lz|P + ||ly||P) for all z,y € X. Let p # 3.
Then we have

oMz, \y)

g = AP e (lzlP + ) — 0

as n — 00, that is, (5) is true.
Since the identity

%wuw) = N 7391=3pg ||z |P = N p(x)

holds for all z € X, we see that the inequality (4) holds with either
L=2"3(p<3)or L= (p>3)
On the other hand, letting p # 2, the relation
Ve -
= = (P 2e(ll=lP + yliP) — 0
Hj
as n — oo holds for all z,y € X, therefore (7) is true. Since the identity
1 9. _ -
Efﬁ(#ﬂ?) = pE 22 Fea|lf = pb?¢(x)
j

holds for all z € X, we see that the inequality (6) holds with either
M=4"2(p<2)or M =5~ (p>2)
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Hence we deduce that
Ll—z‘ Ml—j
o(z) == x(p)ell=|”

AL R Y
(xa(p) + xs(p))ellz||? if p>3
(x2(p) + xs(P))ellz|lP if 2<p<3
(2(P) + xa(p))ellz|lP if p<2

for all z € X which completes the proof of the corollary. 0

The following corollary is the Hyers-Ulam stability of the inequality
(3) which is an immediate consequence of Corollary 3.

COROLLARY 4. Let § > 0 be a real number. Suppose that a function
f: X — Y satisfies the functional inequality

[Df(z,y)ll <6

for all x,y € X and f(0) = 0. Then there exist a unique cubic function
C: X — Y and a unique quadratic function Q) : X — Y such that

37
1) = (C@) + Q) < 556,

[/ o] < 3

and

LD g < Lo

for all z € X.
The functions C and () are given by

C(z) = lim f(A?m)Q__;;L—A?m)

and Q(z) = lim flujo) + éf:u?z)
n—o0 2. 'uj

for all x € X, respectively, where i,5 = 0, 1.
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