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ON THE STRUCTURE OF ORTHOMODULAR
LATTICES SATISFYING LOOP LEMMA

EUNSOON PARK AND MI M1 Kim

ABSTRACT. Every orthomodular lattice satisfying the loop lemma
is the direct product of a Boolean algebra and an irreducible path-
connected orthomodular lattice.

1. Preliminaries

An orthomodular lattice(abbreviated by OML) is an ortholattice L
which satisfies the orthomodular law: if x <y, theny = zV (' Ay) [6].
A Boolean algebra B is an ortholattice satisfying the distributive low:
eV (yAz) = (xzVy)A(xVz)Vz,y, 2z € B.

A subalgebra of an OML L is a nonempty subset M of L which is
closed under the operations V, A and ’. We write M < L if M is a
subalgebra of L. If M < L and a,b € M with a < b, then the relative
interval sublattice Mla,b] = {x € M | a <z < b} is an OML with the
relative orthocomplementation ! on Ma,b] given by ¢! = (a V) Ab =
aV (' Ab) Ve e Mla,b]. In particular, L{a, b] will be denoted by |[a, b]
if there is no ambiguity.

The commutator of a and b of an OML L is denoted by a * b, and is
defined by axb = (aVb) A(aV)A(aVb)A(a' V). The set of all
commutators of L is denoted by ComL and L is said to be commutator-
finite if |ComL]| is finite [5]. For elements a, b of an OML, we say a
commutes with b, in symbols a C b, if axb = 0. If M is a subset of an OML
L,theset C(M) = {z € L|xCm Vm € M} is called the commutant
of M in L and the set Cen(M) = C(M)N M is called the center of M.
The set C(L) is called the center of L and then C(L) = {C(a)|a € L}.
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An OML L is called irreducible if C(L) = {0, 1}, and L is called reducible
if it is not irreducible.

A block of an OML L is a maximal Boolean subalgebra of L. The
set of all blocks of L is denoted by ;. Note that | J2;, = L and
N2, = C(L). An OML L is said to be block-finite if |A| is finite.

For any e in an OML L, the subalgebra S. = [0,¢’] U [e, 1] is called
the (principal) section generated by e. Note that for A, B € A, if
ec(ANB)and ANB=S.N(AUB),then ANB=S5.NA=S.NB.

DEFINITION 1.1. For blocks A, B of an OML L define A ¥ B if and
only if ANB =S.N(AUB) for some e € AN B; A ~ B if and only if
A# Band AUB<L; A~ Bifand only if A~ Band ANB # C(L).

A path in L is a finite sequence By, By, ..., B, (n > 0) in 2y, sat-
isfying B; ~ B;y; whenever 0 < ¢ < n. The path is said to join the
blocks By and B,. The number n is said to be the length of the path.
A path is said to be proper if and only if n = 1 or B; = B;y; holds
whenever 0 < i < n. A path is called to be strictly proper if and only
if B; =~ B;4+1 holds whenever 0 < ¢ < n [1].

Let A, B be two blocks of an OML L. If A ~ B holds, then there
exists a unique element e € AN B satisfying ANB = (AUB)N S, [1].
Using this element e, we say that A and B are linked at e (strongly linked
ate)if A ~ B (A =~ B), and use the notation A ~, B (A =. B).
The element e is called a vertez of L and it is the commutator of any
z € A\ B and y € B\ A [1]. The set of all vertices of L is denoted by
Vi and L is said to be vertez-finite if |V},| is finite.

Note that A =~ B implies A ~ B, and A ~ B implies A “5 B. Some
authors, for example Greechie, use the phrase “A and B meet in the

section S, to describe A ' B [3].

DEFINITION 1.2. Let L be an OML, and A, B € %;,. We will say that
A and B are path-connected in L, strictly path-connected in L if A and B
are joined by a proper path, a strictly proper path, respectively. We will
say A and B are nonpath-connected if there is no proper path joining
A and B, and L is called nonpath-connected if there exist two blocks
which are nonpath-connected. An OML L is called path-connected in L,
strictly path-connected in L if any two blocks in L are joined by a proper
path, a strictly proper path, respectively. An OML L is called relatively
path-connected if each [0, z] is path-connected for all z € L.

Let L be an OML, and A,B,C € A;. If A and B are joined with a
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strictly proper path A = By = By ~ ... & B,,_1 = B,, = B and if B and
C are joined with a strictly proper path B=Cy = C1 = ... & Cp_1 =
C, = C then A and C are strictly path-connected by the concatenated
pathA=Byx~Bi~..~B,, 1~B=~Ci~..~C,1~C,=C.

The following lemma and three theorems are well known.

LEMMA 1.3. If Ly, Ly are OMLs, L = Ly X Lo, A;B € 9, and
C,Dey,, then Ax C ~ B x D holds in L if and only if either A= B
and C ~ D or A~ B and C = D. If A and B are linked at a then
A x C and B x C are linked at (a,0). If C and D are linked at ¢ then
A x C and A x D are linked at (0,c) [1].

THEOREM 1.4. Every finite direct product of path-connected ortho-
modular lattices is path-connected [8].

THEOREM 1.5. Every infinite direct product of path-connected OMLs
containing infinitely many non-Boolean factors is nonpath-connected [7].

THEOREM 1.6. Let L be an OML. Then the following are equivalent:
(1) L is relatively path-connected;

(2) C(z) is path-connected Vzx € L;

(3) S: is path-connected Vz € L [8].

We need the following lemma to prove Theorem 1.8.

LEMMA 1.7. Let L be an OML, and A,B € Ay. If AN B = C(L)
and AU B £ L, then there exist C,D € U, such that AN C # C(L),
CND#C(L) and DN B # C(L).

PROOF. There exist ¢,d such that c,d € AUBand cvd & AUB
since AUB £ L. Hence cVd ¢ C(L) = (L. We may assume that
c € A\ B and d € B\ A. Therefore there exist C, D € 2, such that
c,evde Candd,evde D. Then ¢,d,cvVd ¢ C(L) withce ANC,
cvVde CnNDand de DN B. This completes the proof. a

Let L be an OML. A subalgebra S of L is said to be a full subalgebra if
every block of S is a block of L. Note that each C(z) is a full subalgebra
of L for all x € L since Ag(y) = {B € AL | z € B}.

THEOREM 1.8. Let L be an OML. If [0, z] is path-connected Vx €
L\ C(L), then L is path-connected.



200 Eunsoon Park and Mi Mi Kim

Proor. Let A, B € . First, if ANB # C(L), then there exists y €
ANB\C(L). Since y,y" ¢ C(L), [0,y] and [0,y'] are path-connected by
hypothesis. Thus C(y) is path-connected by Theorem 1.4 since C(y) =
[0,y]®]0,y']. Thus A and B are path-connected in C(y) and therefore
in L since C(y) is a full subalgebra of L. Second, if AN B = C(L) and
AUB < L, then A and B are path-connected. Finally, if AN B = C(L)
and AU B £ L, then there exist C,D € A such that AN C # C(L),
CND#C(L)and DN B # C(L) by Lemma 1.7. Thus A and B are
path-connected by a concatenated path by the first case. This completes
the proof. O

2. Orthomodular lattices satisfying the atomistic Loop
Lemma

Roddy presented an extension of the (Atomic) Loop Lemma [4]
using the following convention [9].

CONVENTION (). Let B be a nonempty set of Boolean algebras with
the following properties:

(1) for all B,C € B, if B C C then B = C;

(2) for all B,C € B, 0 = 0¢ and 1p = 1¢ (hence we define 0 =

Oc, 1 =1¢);

(3) for any distinct B,C € B, either BNC = {0, 1} or there exists a €

(BNC)\{0,1} such that BNC = B[0,a’|UBJa, 1] = C[0,a’'|UC]a,1] in

the latter case we write BNC = SBC; and Vz,y € BNC, 2P = :E’C,

and x <p y if and only if z <¢ y;

(4) for any pairwise distinct B, C, D € B such that BNC = S2¢ and

CND=SEP, either a=b or o <o b.

Let B be a set of Boolean algebras satisfying the above convention.
A subscript on an interval, operation or partial ordering indicates the
Boolean algebra in which the interval, operation or partial ordering is
taken. If y = 2'% and 2 = 2’°, thenz e BNC and y = 2/% =2/ = 2.
Thus the subscripts on the orthocomplementation are unnecessary.

Let < and ’ be the ordering and orthocomplementation induced on
(U B as follows:

(1) z < y if and only if there exists B € B such that z <p y, i.e.

<=U{<z |B € B}

(2) the map ’ : UB — B is defined by =’ = z/? if z € B, i.e.

'=U{®IB eB}.
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We call the elements of B the initial blocks of | B.

DEFINITION 2.1. Let B be a set of Boolean algebras satisfying the
above convention (x). A loop of order n(n > 3) in B is a sequence of
initial blocks (By, By, ..., Bn—1) satisfying the following:

(1) for any distinct 4,5 € {0,1,2,..,n — 1} B; N B; = {0,1} if

|i — j| # 1, and there exists a; € L\ {0,1} with B; N Bjy1 = Sa Bt

where the computation of 7, j is modulo n;

(2) for all pairwise distinct 4, j, k € {0,1,2,...,n—1}, B;NB;NBy =

{0,1}.

EXTENDED LoopP LEMMA. Let B be a set of Boolean algebras sat-
isfying the convention, and let L = ({JB, <, ’, 0, 1). Then L has the
following properties:

(1) L is an orthomodular poset if and only if B admits no loop of

order less than 4;

(2) L is an orthomodular lattice if and only if B admits no loop of

order less than 5;

(3) if L is an orthomodular lattice, then the blocks of L are precisely

the initial blocks [9].

We will show that every OML satisfying the extended loop lemma is
path-connected using the following lemma.

LEMMA 2.2. Let L be an OML satisfying the extended loop lemma,
and B, C, D be distinct blocks of L. If BN C N D # {0,1}, then there
exist a € C such that BN C = S8% and CN D = S¢P. Moreover, if
BﬂCszc, then BNC = §,.

PROOF. Let us prove the first part of this lemma. Since BNCND #
{0,1}, there exist elements z,a,b € L\ {0,1} such that a € BN C,
be CND,BNC =SB¢ CnND = S¢P and z,2’ € (BNCND)\{0,1} =
(S3¢NSEPIN{0,1}. We will prove that @/ £ b. Suppose a’® < b. If
z € C[0,V], then z <V < ain C. Then z ¢ Cla, 1] so that z € C[0,d],
since x € BNC = §B¢ = C[0,a'] UCla,1]. Thus z <c o’ Aca =0
which contradicts that x # 0. Similarly, if x € C[b, 1] then 2’ € C[0, V]
and 2’ = 0 which is a contradiction. Hence a'¢ Zc b. Thus a = b by
(4) of the convention (x).

Let us prove the second part of lemma. It is sufficient to show that
S, C 85¢ = BN C since SBC C 8, is clear. Let z € [0,a’], and let
D € Ay with z <p ao/. We may assume that = # 0 and D is distinct
from B and C. Thus a € (BNCND)\{0,1} and hence BND = SBD by
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the first part of this lemma. Therefore z € D[0,a'] = B[0,a'] = C[0, a’]
and hence z € SBC. If © € [a,1], then 2’ € [0,d]; so by the above
argument ' € BN C, and hence z € BNC. Thus BNC = S,. This
completes the proof. a

An OML L is called the horizontal sum of a family (L;);c; (denoted
by o(L;)ier) of at least two subalgebras, if | JL; = L, and L, N L; =
{0,1} whenever ¢ # j, and one of the following equivalent conditions is
satisfied:

(N ifzeLi\Ljandy e L\ L;, thenz Vy = 1;

(2) every block of L belongs to some Lj;

(3) if S; is a subalgebra of L;, then | JS; is a subalgebra of L [2].

An OML L is said to be the weak horizontal sum of a family (L;).c;
of subalgebras if and only if there exists an isomorphism f of L onto a
product of Lo x L’ of a Boolean algebra Lo and an OML L’ such that the
subalgebra L; of L correspond via f to subalgebras of the form Lg x L}
and L’ is the horizontal sum of the family (L.);es [1].

LEMMA 2.3. Every OML L with only two blocks is isomorphic with
an OML of the form B x (A o C) where A, B, C are Boolean algebras
and A oC is the horizontal sum of A and C. In other words, every OML
with only two blocks is the weak horizontal sum of its blocks [1].

Let L be an OML and By, By € 2. If by € By \ By and by €
By \ B, then we say that (b1, by) distinguishes (By, B2) and we write
(bl» b2)6(Bl> B2)

We are ready to prove the following theorem.

THEOREM 2.4. Let L be an OML satisfying the extended loop le-
mma. Then L is path-connected and there exists a € L such that
L = [0,a'] ® [0,a] where [0,a'] is a Boolean algebra and [0,a] is an
irreducible path-connected OML.

PRrROOF. We may assume that |2z] > 3 by Lemma 2.3. Let us show
that L is path-connected. Let By, B3 € ;. Assume first By N Bs #
{0,1}. Then B, N B3 = S,,, for some element my € L\ {0,1}. We will
show that B, U By < L. Suppose that Bo U B3 £ L. Then there exist
b2, b3 € L such that (bz, b3)(5(32, B3) and b2 \% b3 ¢ B2 U B3. Note that
0 < bg,bg <byVby <1,

If by Cbs, then there exist B; € Ap and my,m3 € L\ {0,1} with
by, b3, b Vbs € By, BiNB; = Sml and B3 N B; = Smg- We see
that my # mg since by € Sy, \ Sm,, M2 # mg since bz € Sy, \ Sy,



On the structure of orthomodular lattices 203

and mz # my since by € Sy, \ Sm,. Thus m; # m; for all distinct
i,j € {1,2,3}. Therefore By N Bo N B3 = {0,1} by Lemma 2.2. Then
(By, B, Bg3) is a loop of order 3 contradicting the extended loop lemma.

If by €bs, then there exist By, By € Ay, and mq,m3, mq € L\ {0,1}
such that by, by Vb3 € By, b3, boVb3 € By, BiNBy= Sml, B3N
By = 55, and B4N By = Sy, since 0 < ba, b3 < by Vb3 < 1. We see that
my # mg since by € Sy, \ Sy, Mo # M3 since bg € Sy \ Sy M3 # My
since by V bs € S, \ Sms, Ma # My since by Vbs € S, \ Sy, M2 # My
since by V by € Sy, \ Sm,, and my # mg since by € Sy, \ Smy- Thus
m; # m; for all distinct 4, j € {1,2,3,4}. Therefore B;NB;NBy = {0,1}
for all pairwise distinct 4,5,k € {1,2,3,4}, otherwise without loss of
generality we may assume that B;NB2N B3 # {0,1} and hence m; = ms
by Lemma 2.2 contradicting m; # mg. Then (B, Bs, Bs, By) is a
loop of order of 4 contradicting the extended loop lemma. Therefore
B;UBs < L.

Assume finally B, N B3 = {0,1}. If Bo U B3 < L, then By and Bj
are path-connected. If By U Bs £ L, then there exist By, By such that
Byn By #{0,1}, BiN By # {0,1} and B4N B3 # {0,1} by Lemma 1.7.
Thus By and Bjs are path-connected by a concatenated path by the first
case.

Let us show that L = [0,a’] @ [0,a] for some a € L where [0,a’]
is a Boolean algebra and [0, a] is irreducible path-connected OML. We
may assume that |%7| > 3 by Lemma 2.3. If there exist A,C € Ap
with AN C = {0,1}, then L is irreducible; hence the conclusion holds
with [0,a’] = {0} and [0,a] = [0,1] = L. Thus we may assume that
ANC #{0,1} VA,C € %L. Let By, Bz, B3 be three distinct blocks in
L. Then ByN By = 53, BoN By =5, and B; N By = S, for some 0 <
z,y,% < 1 by our assumption. If ByNB2NBs = {0, 1}, then (By, By, Bs)
is a loop of order 3 contradicting the Extended Loop Lemma. Thus we
may assume By N By N By # {0,1}. Then BiN By = ByN By = S,
for some a € By by Lemma 2.2. Since B;, Bz and Bs was arbitrary,
ClL)=N™L = ANC =85, VA,C € Ay. Then L = [0,d/] & [0,d]
and [0, a’] is Boolean and [0, a] is a horizontal sum of Boolean algebras,
otherwise there exist two blocks D, E € jg o) such that DN E # {0,a’}
and hence ([0,a'] ® D) N ([0,a'] ® E) # S,. Thus [0,a] is irreducible.
Moreover [0, a] is path-connected. This completes the proof. O

We have the following corollary as a special case of Theorem 2.4.

COROLLARY 2.5. Every OML L satisfying the Loop Lemma [4] is a
path-connected OML and L = [0,a'] & [0, a] where [0,a'] is a Boolean
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algebra with |(0, a']| < 2 and [0, ] is an irreducible path-connected OML.

ProOOF. Let L be an OML satisfying the Loop Lemma. Then for

distinct blocks A, B of L |AN B| < 4 and L satisfies the Extended Loop

Lemma. This completes the proof by Theorem 2.4. il
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