References
- Convex analysis and variational problems v.1 I.Ekeland;R.Temam
- J. Math. Anal. Appl. v.185 no.3 A perturbed algorithm for variatonal inclusions A.Hassouni;A.Moudafi https://doi.org/10.1006/jmaa.1994.1277
- Pacific J. Math. v.30 Multi-valued contraction mappings S.B.Nadler,Jr. https://doi.org/10.2140/pjm.1969.30.475
- Korean J. Comput. Appl. Math. v.4 no.2 Resolvent equations technique for variational inequalities M.A.Noor
- Appl. Math. Lett. v.11 no.4 An implicit method for mixed variational inequalities M.A.Noor
- J. Math. Anal. Appl. v.228 no.1 Generalized set-valued variational inclusions and resolvent equations M.A.Noor https://doi.org/10.1006/jmaa.1998.6127
- Math. Comput. Modelling v.26 no.7 Multivalued variational inequalities and resolvent equations M.A.Noor;K.I.Noor
- J. Math. Anal. Appl. v.220 no.2 Set-valued resolvent equations and mixed variational inequalities M.A.Noor;K.I.Noor;T.M.Rassias https://doi.org/10.1006/jmaa.1997.5893
- Appl. Math. Lett. v.10 no.4 Generalized variational inequalities involving multivalued relaxed monotone operators R.U.Verma
- J. Math. Anal. Appl. v.213 no.1 On generalized variational inequalities involving relaxed Lipschitz and relaxed monotone operators R.U.Verma https://doi.org/10.1006/jmaa.1997.5556
Cited by
- Auxiliary principle for generalized nonlinear variational-like inequalities vol.2006, 2006, https://doi.org/10.1155/IJMMS/2006/95723