Synthesis of Hydroxyapatite as the Artificial Bone Materials from Phosphate Wastewater Simulating Human Body Fluid

체액 모사 인산폐수로부터 인공뼈 재료로서의 수산아파타이트 합성에 관한 연구

  • 이진숙 (이화여자대학교 환경학과) ;
  • 김동수 (이화여자대학교 환경학과)
  • Published : 2004.06.01

Abstract

Basic studies have been conducted regarding the crystal formation of hydroxyapatite which was produced in the treatment process of phosphate-containing wastewater using calcium ions as the precipitating agent for its employment as the material for artificial bones. The precipitation of hydroxyapatite were conducted in the synthetic solution which simulating human body fluid for its increased applicability. Ca($NO_3$)$_2$$.$$4H_2$O and ($NH_4$)$_2$$HPO_4$ were employed for the precipitation of hydroxyapatite and its composition was analyzed after drying at 80oC. The thermal behavior of precipitate was investigated by examining the change in its crystalline structure according to the sintering temperature. DTA/TG analysis showed that the escape of moisture from the precipitate occurred at ca. $100^{\circ}C$ and the decomposition of ammonia and the evaporation of lattice water were brought about at around $250^{\circ}C$. X-ray diffraction analysis indicated that the thermally treated precipitate consisted mainly of hydroxyapatite. For dried precipitate, the bonds in the component materials which used for the precipitate formation were observed by FT-IR, and after thermal treatment the major bonds in the precipitate were shown to be $OH^{-}$, $PO_4^{3-}$ , and $CO_3^{ 2-}$ , which were main comprising bonds of hydroxyapatite.

인이 함유된 폐수를 칼슘으로 침전 처리하는 과정에서 폐수에 존재하는 다른 물질들의 조성이 body fluid와 동일한 상황을 상정하여 하이드록시아파타이트 침전물을 인공 뼈의 재료로 활용하는 방안에 대한 기초 연구를 수행하고자 합성된 인공의 인산폐수 내에서 수산아파타이트 결정의 생성과정을 조사하였다. 수산아파타이트의 결정은 인공폐수 내에서 Ca($NO_3$)$_2$$.$$4H_2$O와 ($NH_4$)$_2$ $HPO_4$을 각각 과포화 시켜 침전반응을 일으켜 생성하였으며, 이 때 석출된 결정은 8$0^{\circ}C$에서 건조과정을 거쳐 그 조성을 분석하였으며, 소결 온도에 따른 결정 구조의 차이점과 결정 생성의 열적 거동을 검토하였다. DTA/TG 결과 $100^{\circ}C$부근에서 $H_2O$의 증발이 관찰되었으며 $250^{\circ}C$에서 암모니아의 분해와 lattice water의 휘발에 의한 무게 감소가 나타났다. 열처리된 시료의 XRD 분석결과 시료의 대부분이 수산아파타이트로 구성되어 있었다. FT-IR측정 결과 건조 시료의 경우, 인공 인폐수 제조에 사용된 물질의 bond가 관찰되었으며, 열분해 한 시료의 경우, hydroxyapatite의 구성성분과 동일한 $OH^{-}$ , PO$_4^{3-}$ , $CO_3^{2-}$ bond가 관찰되었다.

Keywords

References

  1. Cho, J.S., and Jee, H.S., 1998: Nand P removal process in a biological nightsoil treatment plant, Journal of Korean Society of Environmental Engineers, 20(8), pp. 1131-1137
  2. Tchobanoglous, G., and Burton, EL., 1991: Wastewater Engineering; Treatment, Disposal, and Reuse, 3rd ed., pp. 86-87, McGraw-Hill, New York, U.S.A
  3. Ugurlu, A., and Salman, 8., 1998: Phosphorus removal by fly ash, Environment International, 24(8), pp. 911-918 https://doi.org/10.1016/S0160-4120(98)00079-8
  4. Huang, S.H., and Chiswell, B., 2000: Phosphate removal from wastewater using spent alum sludge, Water Science Technology, 44, pp. 295-300
  5. Zhao, D. and Sengupta, A.K., 1998: Ultimate removal of phosphate from wastewater using a new class of polymeric ion exchangers, Water Research, 32(5), pp. 1613-1625 https://doi.org/10.1016/S0043-1354(97)00371-0
  6. Kweh, S.W.K, Khor, KA., and Cheang P., 1999: The production and characterization of hydroxyapatite (HA) powders, Journal of Materials Processing Technology, 8990, pp. 373-377
  7. Cuneyt, TA, 2000: Synthesis of biomimetic Ca-hydroxyapatite powders at $37^{\circ}C$ in synthetic body fluids, Biomaterials, 21, pp. 1429-1438 https://doi.org/10.1016/S0142-9612(00)00019-3
  8. Ruys, A.J., Wei, M., Sorrell, C.C., Dickson, M.R., Brandwood, A., and Milthorpe, B.K, 1995: Sintering effects on the strength of hydroxyapatite, Biomaterials, 16, pp. 409-415 https://doi.org/10.1016/0142-9612(95)98859-C
  9. Lee, M.S., Kim, O.B., and Kim, M.Y., 1995: A study on synthesis and properties of porous hydroxyapatite, Journal of The Korean Institute of Mineral and Energy Resource Engineers, 32, pp. 192-203
  10. Kim, M.Y., Lee, M.S., and Bae, I.K., 1994: Synthesis and characterization of hydroxyapatite powder using precipitation-reaction method, Journal of The Korean Institute of Mineral and Energy Resource Engineers, 31, pp. 156-164
  11. Ashok, M., Meenakshi, S.N., and Narayana, KS., 2003:'Crystallization of hydroxyapatite at physiological temperature', Materials Letters, 57, pp. 2066-2070 https://doi.org/10.1016/S0167-577X(02)01140-0
  12. Anee, T.K., Ashok, M., Palanichamy, M., and Narayana, K.S., 2003: A novel technique to synthesize hydroxyapatite at low temperature, Materials Chemistry and Physics, 78, pp. 1-6 https://doi.org/10.1016/S0254-0584(03)00116-0
  13. Kokubo, T., 1990: Surface chemistry of bioactive glass ceramics, 1. Non-Crystalline Solids, 120, pp. 138-151 https://doi.org/10.1016/0022-3093(90)90199-V
  14. Bezzi, G., Celotti, G., La Torretta, T.M.G., Sopyan, I., and Tampieri, A., 2003: A novel sol-gel technique for hydroxyapatite preparation, Materials Chemistry and Physics, 78, pp. 816-824 https://doi.org/10.1016/S0254-0584(02)00392-9