Study on Synthesis of Pyrochlore in Gd-Ti-O and Gd-Zr-O Systems

Gd-Ti-O계 및 Gd-Zr-O 계에서의 파이로클로어 합성연구

  • ;
  • ;
  • ;
  • S.V. Yudintsev
  • 채수천 (한국지질자원연구원 자원활용소재연구부) ;
  • 배인국 (한국지질자원연구원 자원활용소재연구부) ;
  • 장영남 (한국지질자원연구원 자원활용소재연구부) ;
  • Published : 2004.06.01

Abstract

Pyrochlores were known as promising materials for the immobilization of radioactive actinide. Accordingly, we synthesized pyrochlores with Gd$_2$Ti$_2$$O_7$ and Gd$_2$Zr$_2$$O_7$compositions by sintering method, and studied its properties and phase relations in Gd-Ti-O and Gd-Zr-O system. The mixed powders were pressed into pellets under 200-400 kgf/cm$^2$ at room temperature. and then sintered at 1000-1$600^{\circ}C$ for 0.5-40 hours. The synthesized samples were analyzed and were identified with XRD and SEM/EDS analyses. The optimal synthetic conditions of pyrochlores with Gd$_2$Ti$_2$$O_7$composition were at 140$0^{\circ}C$/0.5hrs, 130$0^{\circ}C$/3hrs and 120$0^{\circ}C$/20hrs. Its chemical composition was $Gd_{2.0-2.1}$$Ti_{1.9-2.0}$$O_7$ and similar to the stoichiometric composition without any relationship in temperature and atmosphere. The optimal synthetic conditions of pyrochlores with $Gd_{2}$$Zr_{2}$$O_7$composition were at 155$0^{\circ}C$/40hrs and 1$600^{\circ}C$/30hrs. The compositions of pyrochlore synthesized from these optimal conditions were irregular with $Gd_{1.5-2.4}$$Zr_{1.7-2.4}$$O_7$. Such heterogeneity indicates that the reaction rate of pyrochlore with Gd$_2$Zr$_2$$O_7$composition is very low, and then its equilibrium state could not be attained even for 40 hours which was the longest sintering time in this research.

Gd-Ti-O 및 Gd-Zr-O계에서의 파이로클로어 (Gd$_2$Ti$_2$$O_7$및 Gd$_2$Zr$_2$$O_7$)는 장주기 방사성 폐기물인 악티나이드 원소들을 고정화시킬 수 있는 물질로써 잘 알려져 있다. 따라서 본 연구에서는 소결법에 의해 이들을 합성하여, 상평형 관계 및 특성을 연구하였다. 혼합된 시료는 상온에서 200-400kgf/$cm^2$의 압력으로 성형한 후, 1000-1$600^{\circ}C$ 범위에서 소결온도 및 분위기를 변화시키면서 소결하였다. 합성된 시료는 XRD 및 SEM/EDS를 사용하여 상분석 및 화학조성을 분석하였다. 실험결과, Gd$_2$Ti$_2$$O_7$의 최적 합성조건은 140$0^{\circ}C$/0.5 hrs, 130$0^{\circ}C$/3 hrs 및 120$0^{\circ}C$/20 hrs였고, 이때의 화학조성은 $Gd_{2.0-2.1}$$Ti_{1.9-2.0}$$O_7$으로 소결온도 및 분위기와 무관하게 화학양론적 조성에 근접하였다. $Gd_{2}$$Zr_{2}$$O_7$의 최적 합성조건은 155$0^{\circ}C$/40 hrs 및 1$600^{\circ}C$/30 hrs였으나 화학조성은 $Gd_{1.5-2.4}$$Zr_{1.7-2.4}$$O_7$로 매우 불균질 하였다. 이 같은 불균질성은 본 연구의 최장 소결시간이었던 40시간에서 조차 평형을 이루지 못할 정도로 Gd$_2$Zr$_2$$O_7$의 생성속도가 매우 낮음을 지시하고 있다.

Keywords

References

  1. 한국광물학회지 v.15 새로운 파이로클로어의 합성 및 결정화학적 특징 장영남;채수천;배인국;Yudintsev,S.V.
  2. 자원환경지질 v.35 고준위핵폐기물의 고정화를 위한 메트릭스 개발: Ce-파이로클로어 합성연구 채수천;장영남;배인국;Yudintsev,S.V.
  3. Proceedings of the 2nd NUCEF International Symposium NUCEF'98 JAERI-Conf.99-004(Part I) Development of Crystalline Ceramic for Immobilization of TRU Wastes in V.G. Khlopin Radium Institute Burakov,B.E.;Anderson,E.B.
  4. Proceedings of the International Conference Waste Management'98(CD version) Garnet Solid Solution of Y₃$A_{15}$O₁₂-Gd₃${Ga}_{5}$$O_{12}$-Y₃${Ga}_{5}$TEX>$O_{12}$ (YAG-/GGG-YGG) as a Prospective Crystalline Host-Phase for Pu Immobilization in the Presence of Ga Burakov,B.E.;Strykanova,E.E.
  5. AIP Conf. Proc. Melville Experience of V.G. Khlopin Radium Institute on Synthesis and Investigation of Pu-Doped Ceramics Burakov,B.E.;Anderson,E.B.;Khlopin,V.G.
  6. Environmental Issues and Waste Management Technologies IV Ceramic forms for Immobilizing Pu Using Zr, Y, Al Metal Additives Burakov,B.E.;Anderson,E.B.;Knecht,D.A.
  7. Mat. Res. Soc. Symp. Proc. v.608 Synthesis and study of 239Pu-dopedgadolinium-aluminum garnet Burakov,B.E.;Anderson,E.E.;Zamoryanskaya,M.V.;Petrova,M.A.
  8. 7th Information Exchange Meeting v.79 Host Phases for Actinides and Long-Lived Fission Products Transmutation/Immobilization Chae,S.C.;Yudintsev,S.V.;Jang,Y.N.;Bae,I.K.
  9. Proceedings of the International Conference HLW, LLW, Mixed Waste Management and Environmental Restoration Working Towards a Cleaner Environment(CD-Rom version) Ceramic for mulation for the immobilization of plutonium Ebbinghaus,B.B.;VanKonenburg,R.A.;Ryerson,F.J.;Vance,E.R.;Stewart,M.W.A.;Jostsons,A.;Allender,J.S.;Rankin,T.;Congdon,J.
  10. Report No. CoONF-951259. Proceedings: Plutonium stabilization & immobilization workshop, Final Proceedings Status of Plutonium Ceramic Immobilization processes and Immobilization Forms Ebbinghaus,B.B.;VanKonenburg,R.A.;Vance,E.R.;Jostsons,A.;Anthony,R.G.;Philip,C.V.;Wronkiewicz,D.J.
  11. Am. Sci. v.41 Ultimate disposal of radioactive wastes Hatch,L.P.
  12. Proc. of International Meeting on Nuclear and Hazardous Waste Management (Spectrum 98) Actinides containment by using zirconolite-rich Synroc Luo,S.;Zhu,X.;Tang,B.
  13. J. Mater. Sci. v.8 Quartz-Matrix isolation of radioactive wastes McCarthy,G.J. https://doi.org/10.1007/BF00549353
  14. Trans. Am. Nucl. Soc. v.23 High-level waste ceramics McCarthy,G.J.
  15. Am. Ceram. Soc. Bull v.54 Ceramic nuclear waste forms McCarthy,G.J.;Davidson,M.T.
  16. Mineralogical Magazine v.49 Disposal of high-level nuclear waste: a geological perspective Ringwood,A.E. https://doi.org/10.1180/minmag.1985.049.351.04
  17. Radioactive waste forms for the future Ringwood,A.E.;Kesson,S.E.;Reeve,K.D.;Woolfrey,J.L.;Ramm,E.J.;W.Lutze(ed.);Ewing,R.C.(ed.)
  18. A. Ceram. Soc. Bull v.54 Ceramic Science of nuclear waste fixation;for abstract see Roy,R.
  19. J. Am. Cerm. Soc. v.60 Radiational molecular engineering of ceramic materials Roy,R. https://doi.org/10.1111/j.1151-2916.1977.tb15559.x
  20. Science v.289 Radiation tolerance of complex oxides Sickafus,K.E.;Minervini,L.;Grimes,R.W.;Valdez,J.A.;Ishimura,M.Li,F.;McClellan,K.J. https://doi.org/10.1126/science.289.5480.748
  21. Scientific Basis for Nuclear Waste management-ⅩⅥⅡ. Mrs Symposia Proceedings v.353 no.pt2 Synthetic melted rock-type wasteforms Sobolev,I.A.;Stefanovsky,S.V.;Lifanov,F.A.
  22. Scientific Basis for Nuclear Waste Management-ⅩⅧ v.353 no.Pt.2 Zirconolite-rich ceramics for actinide wastes Vance,E.R;Begg,B.D.;Day,R.A.;Ball,C.J.
  23. Solid State Ionics v.164 Structural properties of the fluorite and pyrochlore-type compounds in the Gd₂O₃-ZrO₂ system xGd$O_{1.5}$-(1-x)ZrO₂with 0.18≤x≤0.62 Wang,J.;Nakamura,A.;Takeda,M. https://doi.org/10.1016/j.ssi.2003.09.003
  24. Solid State Chemistry v.176 Correlation of crystal structures with elecric field gradients in the fluorite and pyrochlore-type compounds in the Gd₂O₃-ZrO₂system Wang,J.;Otobe,H.;Nakamura,A.;Takeda,M. https://doi.org/10.1016/S0022-4596(03)00353-0
  25. J. of Mat. Reseach v.14 Radiation stability of gadolinium zirconate: a waste form for plutonium disposition Wang,S.X.;Begg,B.D.;Wang,L.M.;Ewing,R.C.;Weber,W.J.;Kutty,K.V.G. https://doi.org/10.1557/JMR.1999.0606
  26. Science v.289 Plutonium immobilization and radiation effects Weber,W.J.;Ewing,R.C. https://doi.org/10.1126/science.289.5487.2051
  27. Proc. of the MRS Symp. v.713 Isomorphic Capacity and Radiation Stability of the Garnet-Structured Actinide Host Yudintsev,S.V.;Lapina,M.I.;Ptashikin,A.G.;Ioudintseva,T.S.;Utsunomiya,S.;Wang,L.M.;Ewing,R.C.