능동적 적외선 조명을 이용한 실시간 3차원 얼굴 방향 식별

Real Time 3D Face Pose Discrimination Based On Active IR Illumination

  • 발행 : 2004.06.01

초록

본 논문에서는 능동적 적외선 조명을 이용한 3차원 얼굴 방향 식별을 위한 새로운 방법을 제안하고자 한다. 적외선 조명 하에서 밝게 나타나는 동공을 효과적으로 실시간 검출하여 추적할 수 있는 알고리즘을 제안한다. 다른 방향의 얼굴들에서 동공의 기하학적 왜곡을 탐지하여, 3차원 얼굴 방향과 동공의 기하학적 특성 사이의 관계를 나타낸 학습 데이터를 사용하여 고유한 눈 특징 공간을 구축하였고, 입력된 질의 영상에 대한 3차원 얼굴 방향을 고유한 눈 특징 공간을 사용하여 실시간으로 얼굴 방향을 측정할 수 있었다. 실험결과 카메라에 근접한 실험 대상자들에 대하여 최소 94.67%, 최고 100%의 식별 결과를 나타내었다.

In this paper, we introduce a new approach for real-time 3D face pose discrimination based on active IR illumination from a monocular view of the camera. Under the IR illumination, the pupils appear bright. We develop algorithms for efficient and robust detection and tracking pupils in real time. Based on the geometric distortions of pupils under different face orientations, an eigen eye feature space is built based on training data that captures the relationship between 3D face orientation and the geometric features of the pupils. The 3D face pose for an input query image is subsequently classified using the eigen eye feature space. From the experiment, we obtained the range of results of discrimination from the subjects which close to the camera are from 94,67%, minimum from 100%, maximum.

키워드

참고문헌

  1. A. Blake, R. Curwen, and A. Zisserman. A framework for spatio-temporal control in the tracking of visual contours, Int. Journal of Computer Vision, 11(2):127-145, 1993 https://doi.org/10.1007/BF01469225
  2. A. Gee and R. Cipoll. Determining the gaze of faces in images, Image and Vision Computing, 30:639 647, 1994
  3. S. Gong, E. Ong, and S. McKenna. Leaming to associate faces across views in vector space of similarities of prototypes. Proc of BriHsh Machine Vision, 1998
  4. T. Horprasert, Y. Yacoob, and L. Davis. Computing 3d head orientation from a monocular image. Proc. of Int. Conf. on automatic face and gesture recognition, pages 242 247, 1996
  5. T. E. Hutchinson. Eye movement detection with improved calibration and speed. U.S. patent 4950069, April, 1990
  6. A. Pentland, B. Moghaddam, and T. Stamer. View based and modular eigenspaces for face recognition. CVPR 94, pages 84-91, 1994
  7. R. Rae and H. Ritter. Recognition of human head orientation based on artiHcial neural networks. IEEE Transactions on Neural Networks, 9(2):257 265, 1998 https://doi.org/10.1109/72.661121
  8. A. Tsukamoto, C. Lee, and S. Tsuji. Detection and pose estimation of human face with synthesized image models. ICPR 94, pages 754 757, 1994