인공신경망기법을 이용한 깊은 굴착에 따른 지표변위 예측

Prediction of Deep Excavation-induced Ground Surface Movements Using Artificial Neural Network

  • 유충식 (성균관대학교 토목환경공학과) ;
  • 최병석 (성균관대학교 건축, 조경, 토목공학부 토목공학과)
  • 발행 : 2004.04.01

초록

본 연구에서는, 굴착 공사로 인한 주변 건물 손상 평가의 일환으로 지표 변위유형의 효과적인 예측 방안을 제시하였다. 먼저 검증된 유한요소 모델을 국내에서 행해지는 다양한 경우의 굴착특성으로 해석한 결과를 통해 인접 지반의 거동에 대한 매개 변수 연구를 수행하였고, 인공신경망 엔진의 학습을 위한 데이터베이스를 구축하였다. 최적의 구조로 학습된 신경망 엔진은 간단한 굴착 특성으로 다양하게 나타나는 지표 변위 유형 예측에 효율적임을 검증하였다.

This paper presents the prediction of deep excavation-induced ground surface movements using artificial neural network(ANN) technique, which is of prime importance in the damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep excavation-induced ground movements, was employed to perform a parametric study on deep excavations with emphasis on ground movements. The result of the finite element analysis formed a basis for the Artificial Neural Network(ANN) system development. It was shown that the developed ANN system can be effective for a first-order prediction of ground movements associated with deep-excavation.

키워드

참고문헌

  1. 대한토목학회논문집 v.22 no.2-C 인공신경망 기법을 이요한 국내 해성점토의 압축 특성 분석 김병탁;윤길림
  2. 한국지반공학회논문집 v.17 no.2 화강암 풍화토의 토량변화율 추정을 위한 인공신경망의 적용 김영수;정성관;암안식;김병탁
  3. 성균관 대학교 박사학위논문 도심지 굴착에 따른 흙막이 벽체의 거동과 겉보기 토압 김연정
  4. 한국지반공학회논문집 v.16 no.1 인공신경망을 이용한 굴착 단계별 흙막이 벽체의 최대변위 예측 시스템 개발 김흥택;박성원;권영호;김진홍
  5. 한국지반공학회 봄 학술 발표회 논문집 지반굴착과 주변 구조물 손상평가 유충식
  6. ABAQUS(ver.6.3) Hibbitt
  7. Building Response to Excavation Induced Settlement Journal of Geotechnical Engineering v.115 no.1 Boscardin,M.D.;Cording,E.J.
  8. Proc. 1st Int. Conf. On Earthquake Geotechnical Engineering ASsessment of risk of damage to buildings due to tunneling and excavation Burland,J.B.
  9. XII Int. Conf. on Soil Mechanics and Foundation Engineering Evaluation and control of ground movements around tunnels and excavation Cording,E.J.
  10. ASCE Annual Convention Excavation, Ground Movements, and Their Influence on Buildings, Protection of Structures Adajecent to Braced Excavation Cording,E.J.;O'Rouke,T.D.
  11. Computers and Geotechnics v.24 no.Issue3 Triaxial compression bethavior of sand and grave using artificial neural networks(ANN) Dayakar penumadu;Rongda Zhao https://doi.org/10.1016/S0266-352X(99)00002-6
  12. J. Geotech. Engrg. v.120 no.9 Serismic liquiaction portential assessed by neural network Goh,A.T.C. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:9(1467)
  13. Fuzzy and Neural Approaches in Engineering Lefteri H.Tsoskalas;Roert E.Uhrig
  14. Practical neural network recipes in C++ Master,T.
  15. MATLAB (ver6.1) The MathWorks, Inc
  16. Computers and Geotechnics v.28 no.Issue4 A neural network model for the uplift capacity of suction caissons M.S.Rahman;J.Wang;/W.Deng;J.P.Carter https://doi.org/10.1016/S0266-352X(00)00033-1
  17. Journal of Geotechnical Engineering Predicting Settlement of Shallow Foundations using Neural Networks Mohamed A.Shahin;Holger R.Maier;Mark B.Jaka
  18. Ph.d. Dissertation, Harvard University New wols for Prediction and Analysis in the Behavior Science Werbors;Beyond Regression