참고문헌
- 대한토목학회논문집 v.22 no.2-C 인공신경망 기법을 이요한 국내 해성점토의 압축 특성 분석 김병탁;윤길림
- 한국지반공학회논문집 v.17 no.2 화강암 풍화토의 토량변화율 추정을 위한 인공신경망의 적용 김영수;정성관;암안식;김병탁
- 성균관 대학교 박사학위논문 도심지 굴착에 따른 흙막이 벽체의 거동과 겉보기 토압 김연정
- 한국지반공학회논문집 v.16 no.1 인공신경망을 이용한 굴착 단계별 흙막이 벽체의 최대변위 예측 시스템 개발 김흥택;박성원;권영호;김진홍
- 한국지반공학회 봄 학술 발표회 논문집 지반굴착과 주변 구조물 손상평가 유충식
- ABAQUS(ver.6.3) Hibbitt
- Building Response to Excavation Induced Settlement Journal of Geotechnical Engineering v.115 no.1 Boscardin,M.D.;Cording,E.J.
- Proc. 1st Int. Conf. On Earthquake Geotechnical Engineering ASsessment of risk of damage to buildings due to tunneling and excavation Burland,J.B.
- XII Int. Conf. on Soil Mechanics and Foundation Engineering Evaluation and control of ground movements around tunnels and excavation Cording,E.J.
- ASCE Annual Convention Excavation, Ground Movements, and Their Influence on Buildings, Protection of Structures Adajecent to Braced Excavation Cording,E.J.;O'Rouke,T.D.
- Computers and Geotechnics v.24 no.Issue3 Triaxial compression bethavior of sand and grave using artificial neural networks(ANN) Dayakar penumadu;Rongda Zhao https://doi.org/10.1016/S0266-352X(99)00002-6
- J. Geotech. Engrg. v.120 no.9 Serismic liquiaction portential assessed by neural network Goh,A.T.C. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:9(1467)
- Fuzzy and Neural Approaches in Engineering Lefteri H.Tsoskalas;Roert E.Uhrig
- Practical neural network recipes in C++ Master,T.
- MATLAB (ver6.1) The MathWorks, Inc
- Computers and Geotechnics v.28 no.Issue4 A neural network model for the uplift capacity of suction caissons M.S.Rahman;J.Wang;/W.Deng;J.P.Carter https://doi.org/10.1016/S0266-352X(00)00033-1
- Journal of Geotechnical Engineering Predicting Settlement of Shallow Foundations using Neural Networks Mohamed A.Shahin;Holger R.Maier;Mark B.Jaka
- Ph.d. Dissertation, Harvard University New wols for Prediction and Analysis in the Behavior Science Werbors;Beyond Regression