Chlorella as a Functional Biomaterial

기능성 생물 소재로서의 클로렐라

  • 채희정 (호서대학교 식품생물공학과 및 벤처전문대학원 첨단산업기술전공) ;
  • 강민숙 (호서대학교 식품영양학과) ;
  • 심상준 (성균관대학교 화학공학과)
  • Published : 2004.02.01

Abstract

Chlorella contains a rich source of biochemical products with applications in the feed, food, nutritional, cosmetic, pharmaceutical and even fuels industries. Chlorella is one of unicellular green algae and is mostly grown in fresh water such as pond and lake. It grows in a manner of nonsexual reproduction so that it multiplies 4~16 times overnight. Large-scale culture is conducted by open pond culture or pure culture using fermenter. Chlorella has various efficacies such as heavy metal removal, degradation of toxic materials, control of arteriosclerosis, immunoprotective effects, anticancer activity and growth-stimulating activity of intestinal bacteria. Chlorella can be used as a taste enhancer and foodstuff, as it has a plenty of essential amino acids, polyunsaturated fatty acids, sterols and chlorella growth factor (CGF). Chlorella is a potential organism which can be utilized for CO$_2$ removal and H$_2$ Production in environmental area and energy Production.

클로렐라는 생물화학적 성분들을 풍부하게 함유하고 있어서 영양학적으로 사료나 식품으로 이용되며 화장품, 의약품, 심지어 연료로도 이용되고 있다. 클로렐라는 보통 연못이나 호수 등 담수에서 생육하며, 구형 단세포이다. 생식은 무성생식으로 하루에 4-16배로 증식한다. 클로렐라의 대량생산을 위한 배양은 크게 옥외배양법과 발효조 배양법으로 나뉜다. 클로렐라는 필수 아미노산과 생체에 여러 가지 생리적 기능을 수행하는 지방산과 스테롤, 유산균 성장 촉진 원인 물질인 chlorella growth factor (CGF)의 함유되어 있으며, 생체 내에서 중금속 배출기능, 독성물질의 분해, 동맥경화 및 간장장애의 억제, 면역기능 강화, 항암 활성, 장내 유효세균의 증식 촉진, 식품의 풍미 향상 및 보습효과 등의 기능성을 가지고 있어 기능성 생물소재로 주목되고 있다. 클로렐라는 건강기능식품, 화장품, 의약품 소재로서 응용될 수 있을 뿐만 아니라 이산화탄소의 고정화와 수소가스의 생성 등 환경 및 에너지의 생산을 위한 수단으로서의 역할이 전망된다.

Keywords

References

  1. J. Microbiol. Biotechnol. v.15 Marine bioindustry development Kim,S.J.
  2. Biomol. Eng. v.20 Commercial development of microalgal biotechnology: from the test tube to the marcketplace Miguel,O. https://doi.org/10.1016/S1389-0344(03)00076-5
  3. Plant Physiol. Biochem. v.38 Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris Bajguz,A. https://doi.org/10.1016/S0981-9428(00)00733-6
  4. J. Biosci. Bioeng. v.84 Bioactivities of nostocine produced by a freshwater cyanobacterium Nostoc spongiaeforme TISTR 8169 Kazumasa,H.;Y.Sayaka;D.Susilangsih;I.Osamu;M.Aparat;P.Jirapatch;M.Kazuhisa
  5. Enzyme Microbial. Technol. v.8 Biologically active compounds from microalgae Metting,B.;J.W.Pyne https://doi.org/10.1016/0141-0229(86)90144-4
  6. Solar Energy v.7 Power from solar energy-via algae-produced methane Golueke,C.G.;W.J.Oswald https://doi.org/10.1016/0038-092X(63)90033-1
  7. J. Exp. Marine Bio. Eco. v.161 Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae Brown,M.R.;S.W.Jeffrey https://doi.org/10.1016/0022-0981(92)90192-D
  8. J. Biotechnol. v.70 Outdoor continuous culture of Porphyridium cruentum in a tubular photobioreactor: quantiative analysis of the daily cyclic cariation of culture parameters Fuentes,M.M.R.;J.L.G.Sanchez;J.M.F.Sevilla;F.G.A.Fernandez;J.A.S.Perez;E.M.Grima https://doi.org/10.1016/S0168-1656(99)00080-2
  9. Isr. J. Aquacult. v.54 A review: Dietary benefits of algae as an additive in fish feed Mustafa,M.G.;H.Nakagawa
  10. Inorg. Chim. Acta v.356 Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae Mendes,R.L.;B.P.Nobre;M.T.Cardoso;A.P.Pereira;A.F.Palavra https://doi.org/10.1016/S0020-1693(03)00363-3
  11. Cryptogamie Algologie v.21 Effect of culture media on production of polyunsaturated fatty acids by Pavlova lutheri Carvalho,A.P.;F.X.Malcata https://doi.org/10.1016/S0181-1568(00)00101-X
  12. Aquaculture v.67 Bacteriosis associated with epizootic in the giant sea perch, Lates calcarifer, and the estuarine grouper, Epinephelus tauvina, cage cultured in Malaysia Nash,G.;I.G.Aderson;M.Shariff;M.N.Shamsudin https://doi.org/10.1016/0044-8486(87)90014-7
  13. Scenedesmus quadricauda, Algae v.13 Advanced treatment of swine wastewater by a green alga Kim,Y.H.;M.K.Park;B.D.Yun;H.S.Kim;H.H.Seo;H.M.Oh;S.J.Lee
  14. Phytochem. v.23 Biomass production, total protein chlorophylls, lipids and acids of freshwater green and blue-green algae under different nitrogen regimers Piorreck,M.;K.H.Baasch;P.Pohl https://doi.org/10.1016/S0031-9422(00)80304-0
  15. Bioresource Technol. Improving Spirulina platensis biomass yield using a fed-batch process Costa,J.A.;V.L.M.Colla;P.F.Filho
  16. Am. J. Botany v.49 Mass culture of algae for food and other organic compounds Karuss,R.W. https://doi.org/10.2307/2439085
  17. Food Ind. v.9 What is Chlorella Atsushi,M.
  18. Cambridge Studies in Biotechnology v.10 Microalgae-biotechnology and microbiology Becker,E.W.;J.Baddiley(ed.);N.H.Carey(ed.);I.J.Higgins(ed.);W.G.Potter(ed.)
  19. Kor. J. Soc. Agric. Chem. Biotechnol. v.46 Studies on quality characteristics and shelf-life of chlorella soybean (Tofu) Kim,S.S.;M.K.Park;N.S.Oh;D.C.Kim;M.S.Han;M.J.In
  20. Kor. J. Soc. Food Sci. Nutr. v.31 Quality characteristics of Sulgidduk containing Chlorella powder Park,M.K.;J.M.Lee;C.H.Park;M.J.In https://doi.org/10.3746/jkfn.2002.31.2.225
  21. Drug Chem. Toxicol v.7 Detoxification chlordecone poisoned rats with Chlorella and Chlorella derived sporopollenin Pore,R.S. https://doi.org/10.3109/01480548409014173
  22. Eisei Kagaku v.24 Asorption and excretion of cadmium by the rat administered cadmium-containing Chlorella Nagano,T.;Y.Watanabe;T.Honma;Y.Suketa;T.Yamamoto
  23. Jap. J. Hyg. v.30 Effect of chlorella on fecal and urinary cadmium excretion in "Itai-Itai" hagino,N.
  24. Environ. Pollut. v.105 Biodegradation capacity of tributyltin by two Chlorella species Tsang,C.K.;P.S.Lau;N.F.Y.Tam;Y.S.Wong https://doi.org/10.1016/S0269-7491(99)00047-0
  25. J. Appl. Phycol. v.2 Mercury removal by immobilized algae in batch culture system Wilkinson,S.C.;K.H.Goulding;P.K.Robinson https://doi.org/10.1007/BF02179779
  26. Anticancer Res. v.18 Perinatal influence of Chlorella vulgaris (E-25) on hepatic drug metabolizing enzymes and lipid peroxidation Singh,A.;S.P.Singh;R.Bamezai
  27. Chlorella vulgaris, Phytochem. v.40 Anti-tumour-promoting glyceroglycolipids from the green alga Morimoto,T.;A.Nagatsu;N.Murkami;J.Sakakibara;H.Tokuda;H.Nishino;A.Iwashima https://doi.org/10.1016/0031-9422(95)00458-J
  28. Immunopharmacol v.35 Effect of hot water extract of Chlorella vulgaris on cytokine expression patterns in mice with murine acquired immunodeficiency syndrome after infection with Listeria monocytogenes Hasegawa,T.;Y.Kimura;K.Hiromatsu;N.Kobayashi;A.Yamada;M.Makino;M.Okuda;T.Sano;K.Nomoto;Y.Yoshikai https://doi.org/10.1016/S0162-3109(96)00150-6
  29. Int. J. Immunophamacol. v.21 Oral administration of a hot water extracts of Chlorella vulgaris reduces IgE production against milk casein in mice Hasegawa,T.;K.Ito;S.Kumamoto;Y.Ando;A.Yamada;K.Nomoto;Y.Yasunobu https://doi.org/10.1016/S0192-0561(99)00013-2
  30. Food Sci. Ind. v.6 The present status and future of Chlorella Han,J.G.;G.G.Kang;J.K.Kim;S.H.Kim
  31. J. Appl. Phycol. v.6 Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms Barclay,W.R.;K.M.Meager;J.R.Abril https://doi.org/10.1007/BF02186066
  32. J. Appl. Phycol. v.5 An inverstigation of the heterothrophic culture of the green alga Tetraselmis Day,J.G.;A.J.Tsavalos
  33. Food Ind. v.10 The effect on bioactivities of Chlorella Kim,Y.H.
  34. Food Chem. Toxicol. A review of the safety of DHA 45-oil Kores,R.;E.J.Schaefer;R.A.Squire;G.M.Williams
  35. Phytochem. v.42 Biotransformations of progesterone by Chlorella spp. Pollio,A.;G.Pinto;M.D.Greca;A.Fiorentimo;L.Previtera https://doi.org/10.1016/0031-9422(95)00996-5
  36. Phytochem. v.41 Biotransformation of progesteron by the green algal Chlorella emersonii C211-8H Greca,M.D.;A.Fiorentino;G.Pinto;A.Pollio;L.Previtera https://doi.org/10.1016/0031-9422(95)00786-5
  37. J. Ferment. Bioeng. v.81 Growth-promoting factor for an extract of Chlorella vulgaris CK-5 Kanno,T.;K.Shinpo;M.Masada;G.Tamura
  38. Food J. v.9 Technology on quality control in Chlorella production Atsushi,M.
  39. Biochim. Biophy. Acta. v.12 Correlation between photosynthesis and light-independent metabolism in the growth of Chlorella Tamiya,H.;T.Iwamura;K.Shibata;E.Hase;T.Nihei https://doi.org/10.1016/0006-3002(53)90120-6
  40. J. Appl. Phycol. v.6 Microalgal feeds for aquaculture Gladue,R.G.;J.E.Maxey https://doi.org/10.1007/BF02186067
  41. Biorogical solar Energy Conversion Mass culture of chlorella in asian countries Tasukada,O.;T.Kawahara;A.Mitsui(ed.);S.Miyachi(ed.);A.SanPietro(ed.);H.Tamija(ed.)
  42. Algae Biomass Production and development of Chlorella and Spirulina in taiwan Soong,P.;G.Shelef(ed.);J.Soeder(ed.)
  43. Phycology Research for 1990, Proc. Phycology Research Conerence Large scale microalgal culture and applications Richmond,A.
  44. Hydrobiol v.151 The challenge confronting industrial microalgal culture: high photosynthetic efficiency in large-scale reactors Richmond,A. https://doi.org/10.1007/BF00046116
  45. Biotechnol. Bioeng. v.31 Photobioreactor design: mixing, carbon utilization and oxygen accumulation Weissman,J.C.;R.P.Geobe;J.R.Benemann https://doi.org/10.1002/bit.260310409
  46. Bioresource Technol. v.38 Preface of the special issue Richmond,A.;A.Vonshak https://doi.org/10.1016/0960-8524(91)90134-6
  47. Kor. J. Environ. Biol. v.16 Biological fixation for global warming gas of microakgae Oh,H.M.;J.S.Kim;S.J.Lee
  48. Appl. Biochem. Biotechnol. v.51 Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler Matumoto,H.;N.Shioji;A.Hamasaki;Y.Ikuta;Y.fukuta;M.Sato;N.Endo;T.Tsukamoto https://doi.org/10.1007/BF02933469
  49. Biotechnol. Bioeng. v.37 A study of the energetics and economics of microalgal mass culture with the marine chlorophyte Tetraselmis suecica: implications for use of powerplant stackgases Laws,E.A.;J.L.Berning https://doi.org/10.1002/bit.260371007
  50. Biotechnol. Bioeng. Photosynthetic performance of a helical tubular photobioreactor incorporating the cyanobacterium Spirulina platensis Watanabe,Y.;D.L.J.Noue;H.Do
  51. J. Chem. Technol. Biotechnol. A turbular bioreactor for photosynthetic production of biomass from carbon dioxide: design and performance Pirt,S.J.;Y.K.Lee;M.R.Walach;M.W.Pirt;H.H.Balyuzi;M.J.Barzin
  52. Appl. Biochem. Biotechnol. v.39 Production of ultra fine calcite particles by Coccolithophorid algae grown in a biosolar reactor supplied with sunlight Takano,H.;H.Furn-Une;J.C.Burgess;E.Manabe;M.Hirano;M.Okazaki;T.Matsunaga https://doi.org/10.1007/BF02918986
  53. Chem. Engin. Proc. v.38 Design of a photo-bioreactor for modelling purposes Csogor,Z.;M.Herrenbauer;I.Perner;K.Schmidt;C.Posten https://doi.org/10.1016/S0255-2701(99)00048-3
  54. J. Biotechnol. v.70 Comparative evaluation of compact photobioreactors for large scale monoculture of microalgae Miron,A.S.;A.C.Gomez;F.G.Camacho;E.M.Grima;Y.Chisti https://doi.org/10.1016/S0168-1656(99)00079-6
  55. Mirobiol. Ind. v.12 Large-cultre of microalgae Lee,C.G.
  56. Kor. J. Environ. Biol. v.16 Biological fixation of CO₂ by microalgae Oh,H.M.;J.S.Kim;S.J.Lee
  57. Biomass Bioenergy v.23 Growth of microalgae with increased calorific values in a tubular bioreactor Scragg,A.H.;A.M.Illman;A.Carden;S.W.Shales https://doi.org/10.1016/S0961-9534(02)00028-4
  58. Aquacult. Eng. v.27 The hydraulically intergrated serial turbidostat algal reactor (HISTAR) for microalgal production Rusch,K.A.;J.M.Christensen https://doi.org/10.1016/S0144-8609(02)00086-9
  59. J. Biochem. Eng. v.4 Modelling of a single-staged bioseparation process for simultaneous removal of iron (Ⅲ) and chromium (Ⅵ) by using Chlorella vulgaris Aksu,Z.;A.Unsal https://doi.org/10.1016/S1369-703X(99)00053-4
  60. Anticancer Res. v.19 Inhibitory potential of Chlorella vulgaris (E-25) on mouse skin papilomagenesis and xenobiotic detoxication system Singh,A.;S.P.Singh;R.Bamezai
  61. Proc. The 3rd International Symposium on Chlorella Detoxification of lead poisoned rats with Chlorella Baek,S.H.;S.J.Kim;J.H.Han;J.W.Heo
  62. Kor. J. Soc. Food Sci. Nutr. v.30 Comparison on chlorine removal characteristics of Chlorella vulgaris and green tea in aqueous solution Cho,I.K.;S.H.Kim;D.C.Kim;H.J.Chae;N.S.Oh;D.H.Kim;M.J.In
  63. Marine Pollut. Bull. v.45 Removal of tributyltin (TBT) by live and dead microalgal cells Tam,N.F.Y.;A.M.Y.Chong;Y.S.Wong https://doi.org/10.1016/S0025-326X(02)00184-4
  64. Phytochem. v.51 Biotransformation of aromatic aldehydes by five species of marine microalgae Hook,I.L.;S.Ryan;H.Sheridan https://doi.org/10.1016/S0031-9422(99)00037-0
  65. J. Biochem. Bioeng. v.33 BIOALGA reactor: preliminary studies for heavy metals removal Travieso,L.;A.Pellon;F.Benitez;E.Sanchez;R.Borja;N.O'Farrill;P.Weiland
  66. Water Res. v.36 Removal of ammonium and phosphorus ions from synthetic wastewater by the microlagae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense Bashan,L.E.D.;M.Moreno;J.P.Hemandez;Y.Bashan https://doi.org/10.1016/S0043-1354(01)00522-X
  67. Immunopharmacol. v.3 Protective effects of Chlorella vulgaris in lead-exposed mice infected with Listeria monocytogenes Queiroz,M.L.S.;A.P.O.Rodrigues;C.B.C.A.V.Figueiredo;S.Malacrida https://doi.org/10.1016/S1567-5769(03)00082-1
  68. Cancer Immunol. Immunother v.32 Enhanced resistance against Escherichia coli infection by subcutaneous administration of the hot-water extract of Chlorella vulgaris in cyclophophamide-treated mice Konishi,F.;K.Tanaka;S.Kumamoto;T.Hasegawa;M.Okuda;I.Yano;Y.Yoshikai;K.Monoto https://doi.org/10.1007/BF01741717
  69. Cance Immu. Immunother v.19 Antiumer effect induced by a hot water extract of Chlorella vulgaris (CE): resistance to meth a tumor growth mediated by CE-induced polymorphonuclear leukocytes Konishi,F.;K.Tanaka;K.Himeno;K.Taniguchi;K.Nomoto
  70. Inf. Immun. v.53 Agumentain of host defense by a unicellular green alga, Chlorella vulgaris, to Escherichia coli infection Tanaka,K.;T.Koga;F.Konishi;M.Nakamura;K.Mitsuyama;K.Nomoto
  71. Immunophamacol. v.21 Oral administration of a hot water extracts of Chlorella vulgaris reduces IgE production against milk casein in mice Hasegawa,T.;K.Ito;S.Kumamoto;Y.Ando;A.Yamada;K.Nomoto;Y.Yasunobu https://doi.org/10.1016/S0192-0561(99)00013-2
  72. Plant Med. v.62 A water soluble antiumor glycoprotein from Chlorella vulgaris Noda,K.;N.Ohno;K.Tanaka;N.Kamiya;M.Okuda;T.Yadomae;K.Nomoto;Y.Shoyama https://doi.org/10.1055/s-2006-957931
  73. Cancer Immunol Immuno. v.42 Protective effect of an acidic glycoprotein obtained from culture of Chlorella vulgaris against myelosuppression by 5-fluouracil Konishi,F.;M.Misuyama;M.Okuda;K.Tanaka;T.Hasegawa;K.Nomoto https://doi.org/10.1007/s002620050281
  74. Immunopharmacol. v.12 Accelerated restoration of the leukocyte number and augmented resistance against Escherichia coli in cyclophophamide-treated rats orally administered with a hot water extract of Chlorella vulgaris Hasegawa,T.;Y.Yoshikai;M.Okuda;K.Nomoto https://doi.org/10.1016/0192-0561(90)90007-A
  75. Nat. Immun. Cell Growth Regul. v.9 Effect of Chlorella vulgaris extracts on miurine cytomegalovirus infections Ibusuki,K.;Y.Minamishima
  76. Immunopham. v.11 Agumentation of the resistance against Escherichia coli by oral administration of a hot water extract of Chlorella vulgaris in rat Hasegawa,T.;K.Tanaka;K.Ueno;S.Ueno;M.Okuda;Y.Yoshikai;K.Nomoto https://doi.org/10.1016/0192-0561(89)90120-3
  77. Energy Conv. Manag. v.34 Aquatic biomass and carbon dioxide trapping Brown,L.M.;K.G.Zeiler https://doi.org/10.1016/0196-8904(93)90048-F
  78. J. Chem. Tech. Biotechnol. v.10 Enhancement CO₂ of tolerance of Chlorella vulgaris by gradual increase of CO₂ concentration Yun,Y.S.;J.M.Park;J.W.Yang
  79. Biotechnol. Bioeng. v.10 CO₂ fixation by Chlorella HA-1 cultured in bubble columns Sung,G.D.;J.S.Lee;C.S.Shin;M.S.Kim;S.C.Park;S.W.Kim
  80. Algal and Cyanobacterial Biotechnology Fuels for algae Calvin,M.;S.E.Taylor;R.C.Cressell(ed.);T.A.V.Rees(ed.);N.Shah(ed.)
  81. FEMS Microbiol. Rev. v.16 Liquid and gaseous fuels from biotechnology: challenge and opportunities Kosaric,N.;J.Velikonja https://doi.org/10.1111/j.1574-6976.1995.tb00161.x
  82. J. Kor. Solid Wastes Eng. Soc. v.13 Degradation haracteristics and microbial behavior of microalgae in methane fermentation Kang,C.M.;B.T.Kim
  83. Chalmydomona reinhardtii, Plant Physiol. v.122 Sustained photobiological hydrogen gas production upon reversible of oxygen evolution in the green alga Melis,A.;L.Zhang;M.Forestier;M.L.Ghirardi;M.Siebert https://doi.org/10.1104/pp.122.1.127
  84. Microbial Lipids 2 Biotechnology of oils and fats Ratledge,C.;C.Ratledge(ed.);S.G.Wilkinson(ed.)
  85. Micro-algal Biotechnology Fats, oils and hydrocarbons Borowitzka,M.A.;M.A.Borowitzka(ed.);L.J.Borowitzka(ed.)
  86. Past Perspectives and Future Trends Fifty years of antimicrobials Zahner,H.;H.P.Fiedler;P.A.Hunter(ed.);G.K.Darby(ed.);N.J.Russell(ed.)
  87. Innov. Food Sci. Emerg. Technol v.4 Relative stabilities of microalgal carotenoids in microalgal extracts, biomass and fish feed: effect of storage conditions Gouveia,L.;J.Empis https://doi.org/10.1016/S1466-8564(03)00002-X
  88. Pure Appl. Chem. v.23 Biologial functions and activities of carotenoids Miki,W.
  89. Kor. Soc. Food Eng. Partial purification of bioactive proteins from Chlorella hydrolysate Kang,M.S.;S.J.Sim;H.J.Chae
  90. Kor. Ins. Indus. Technol. Biological efficacy assay of Chlorella hydrolysate Kang,M.S.;H.J.Chae