Abstract
The Pyramid-Technique is based on mapping n-dimensional space data into one-dimensional data and expresses it as a B+-tree. By solving the problem of search time complexity the pyramid technique also prevents the effect of "phenomenon of dimensional curse" which is caused by treatment of hypercube range query in n-dimensional data space. The SPY-TEC applies the space division strategy in pyramid method and uses spherical range query suitable for similarity search so that Improves the search performance. However, nearest neighbor query is more efficient than range query because it is difficult to specify range in similarity search. Previously proposed index methods perform well only in the specific distribution of data. In this paper, we propose an efficient searching technique for nearest neighbor object using PdR-Tree suggested to improve the search performance for high dimensional data such as multimedia data. Test results, which uses simulation data with various distribution as well as real data, demonstrate that PdR-Tree surpasses both the Pyramid-Technique and SPY-TEC in views of search performance.rformance.
피라미드 기법은 n-차원 공간 데이터를 1차원 데이터로 변환하여 B+-트리로 표현하며, n-차원 데이터 공간에서 하이퍼큐브 영역질의 처리로 발생하는 “차원의 저주현상”에 영향을 받지 않게 검색 시간 문제를 해결하고 있다. 또 구형 피라미드 기법(SPY-TEC)은 피라미드 기법의 공간 분할 전략을 응용하여 유사도 검색에 적합한 구 영역질의 방법을 사용하고 검색 성능을 개선하고 있다. 하지만 유사도 검색의 응용에서 영역질의는 범위를 지정하는데 어려움이 있어 최근접 질의가 더 효율적이며, 기존의 제안된 인덱스 기법들은 특정 분포의 데이터에 대해서만 우수한 성능을 보이는 단점이 있다. 따라서 이 논문에서는 멀티미디어 데이터와 같은 고차원 데이터의 검색 성능을 향상시키기 위해 제안되었던 PdR-트리를 이용하여 최근접 객체 검색 기법을 제안한다. 다양한 분포의 모의 데이터와 실제 데이터를 이용하여 실험한 결과, PdR-트리가 피라미드 기법과 구형 피라미드 기법보다 검색 성능이 향상되었음을 보이고 있다.