미생물 위해성 평가의 용량-반응 모델에 대한 고찰

A Review of Dose-response Models in Microbial Risk Assessment

  • 최은영 (농촌진흥청 농업과학기술원 농촌자원개발연구소) ;
  • 박경진 (한국보건산업진흥원)
  • 발행 : 2004.03.01

초록

미생물 위해성 평가의 용량-반응 모델은 생물학적 모델과 경험적 모델로 나눌 수 있다. 생물학적 모델은 미생물의 분포형태, 미생물에 대한 숙주의 감수성, 감염을 일으킬 수 있는 미생물 수에 대한 가정을 바탕으로 성립된 모델로서, 대표적으로 Exponential model과 $\beta$-Poisson model이 있다. 경험적 모델은 주로 화학물질의 독성을 나타내는데 이용되어 온 모델로, Weibull-Gamma model등이 있다. 여러 용량-반응 모델 중에서 실험 데이터에 적합한 모델을 걱정하는 데에는 deviance function(Y)을 이용하며, 현재 일부 식중독균에 대해서는 사람과 실험동물에서의 용량-반응 모델이 연구되어 있다.

Dose-response models in microbial risk assessment can be divided into biologically plausible models and empirical models. Biologically plausible models are formed by the assumptions in dose distribution of microbes, host sensitivity to microbes, and minimal infectious dose of microbes : there are Exponential model and $\beta$-Poisson model, representatively. Empirical models are mainly used to express the toxicity of chemicals : there are Weibull-Gamma model etc. Deviance function (Y) is used to fit available data to dose-response models, and some dose-response models for food-borne pathogens are developed in humans and experimental animals.

키워드

참고문헌

  1. Notermans, S. and Teunis, P.: Quantitative risk analysis and the production of microbiologically safe food - an introduction. Int. J. Food Microbiol., 30, 3-7 (1996) https://doi.org/10.1016/0168-1605(96)00987-7
  2. Buchanan, R.L., Smith, J.L. and Long, W.: Microbial risk assessment - Dose-response relations and risk characterization. Int. J. Food Microbiol., 58, 159-172 (2000) https://doi.org/10.1016/S0168-1605(00)00270-1
  3. Coleman, M.E. and Marks, H.M.: Topics in dose-response modeling. J. Food Prot., 61, 1550-1559 (1998) https://doi.org/10.4315/0362-028X-61.11.1550
  4. Charles N. Haas, Joan B. Rose, and Charles P. Gerba: Quantitative Microbial Risk Assessment. John Wiley & Sons, Inc., 260-284 (1999)
  5. Peter F.M. Teunis, Nico J.D. Nagelkerke, and Charles N. Haas: Dose-response models for infectious gastroenteritis. Risk analysis, 19, 1251-1260 (1999)
  6. Medema, G.J., Teunis, P.F.M., Havelaar, A.H. and Haas, C.N.: Assessment of the dose-response relationship of Campylobacter jejuni. Int. J. Food Microbiol., 30, 101-111 (1996) https://doi.org/10.1016/0168-1605(96)00994-4
  7. 김길생, 이효민, 임철주, 권오란, 최시내, 윤은경, 홍지연 : 식품종 미생물 위해성평가 방법론 연구. The annual report of KFDA, 2, 66-75 (1998)
  8. Charles N. Haas, Aadithya Thayaar-Madabusi, Joan B. Rose, and Charles P. Gerba: Development of a dose-response relationship for Escherichia coli 0157:H7. Int. J. Food Microbiol., 1748, 153-159 (2000)
  9. Mark R. Powell, Eric Ebel, Wayne Schlosser, Mark Walderhaug, and Janell Kause: Dose-response envelope for Escherichia coli O157:H7. Quantitative microbiology, 2, 141-163 (2000) https://doi.org/10.1023/A:1011557402204
  10. Draft assesment of the relative risk to public health from foodbome Listeria monocytogenes among selected categories of ready-to eat foods. http://www.foodsafety.gov/-dms/ Imrisk.html
  11. Heejeong K. Latimer, Lee-ann Jaycus, Roberta A. Morales, Peter Cowen, and Douglas Crawford-Brown: A weighted composite dose-response model for human Salmonellosis. Risk analysis, 21, 295-305 (2001) https://doi.org/10.1111/0272-4332.212112
  12. Christopher S. Crockett, C.N. Haas, Aamir Fazil, J.B. Rose, and C.P. Gerba: Prevalence of shigellosis in the U.S. consistency with dose-response information. Int. J. Food Microbiol., 30, 87-99 (1996) https://doi.org/10.1016/0168-1605(96)00993-2
  13. Draft risk assessment on the public health impact of Vibrio parahaemolyticus in raw Molluscan shellfish. http://www. foodriskclearinghouse.umd.edu/vibrio.htm
  14. David L. Holcomb, Mary A Smith, Glenn O. Ware, Yen-Con Hung, Robert E. Brackett, and Michael P. Doyle: Comparison of six dose-response models for use with food-borne pathogens. Risk Analysis, 19, 1091-1100 (1999)